6. LAND AND SOILS

6.1 Introduction

This chapter of the EIAR comprised of an assessment of the likely impact of the proposed development on soils and the geological environment as well as identifying proposed mitigation measures to minimize any impacts.

In summary, the project comprises the development of 366 no. residential units consisting of the following mix of unit types:

- 28 no. 1 bed apartments
- 118 no. 2 bed apartments
- 36 no. 3 bed duplex units
- 20 no. 2 bedroom house
- 75 no. 3 bedroom house
- 77 no. 4 bedroom house
- 12 no. 5 bedroom house

In addition, the development will also include ancillary public open space, ancillary residential parking spaces and a childcare facility with associated parking spaces.

The Capdoo Link Road which will transverse the site is listed as a "Priority Road Scheme" in the Kildare County Council Development Plan 2017 – 2023 and will be constructed as part of the development. This link road along with a roundabout/junction upgrades will facilitate the primary access points to development. A separate independent access point is provided off a rural road north of the site.

The surface water drainage system accords with SUDs principles with the main body of the site divided into three drainage catchments with two additional catchments for the link road. Attenuation will be provided in each catchment utilising Stormtech Underground Chamber systems, with a controlled greenfield run-off rate of 2.00l/sec/ha. A surface water outfall will be constructed along the rural roads to the east of the site and will discharge to the Gollymochy Stream.

The majority of the foul drainage will connect to an existing foul sewer south east of the site with a small isolated section connecting north west of the site. The proposed foul drainage discharge point south east of the site is slightly elevated above the eastern side of the site. As such, a foul pumping station, rising main and associated rising main discharge (header) manhole will be required to service a large section of the development (185 out of 366 units). The north western and southern portions of the site will discharge by gravity into the appropriate discharge manholes.

Infill Material will be imported on-site. This material will be either quarried product from quarries that have planning permission; greenfield/inert soil imported under a Waste Permit issued by the local authority; or materials that have been approved as by-products by the EPA in accordance with the EPA's criteria for determining a material is a by-product, per the provisions of article 27(1) of the European Communities (Waste Directive) Regulations, 2011.

6.2 Methodology

Assessment of the likely impact of the proposed development on soils and the geological environment includes the following activities:

- Preliminary Ground Investigation Study
- Review of information available on the Geological Survey of Ireland (GSI) online mapping service

Preliminary Ground Investigations for the proposed development were carried out by IGSL on July 2017 and included the following scope of work:

- 3 No. Boreholes
- 23 No. Trial Pits
- 20 No. Plate Bearing Tests
- 50 No. Dynamic Probes
- 8 No. Infiltration Tests

Refer to Appendix 6.A Ground Investigation Report (IGSL, Issue Date July 2017, report no. 20159).

6.3 Receiving Environment

6.3.1 Soils

Review of information available on the GSI's online mapping service ("Quaternary Sediments") indicate that the site is underlain predominantly by a sediment type described as "TLs – Till derived from limestones". Refer to Figure 6.1 below.

Ground conditions at the site, as observed during Preliminary Ground Investigations, are summarised as follows:

- 0.3m to 0.6m thick topsoil layer overlying;
- 0.7m to 1.0/2.0m thin stratum of firm gravelly silt/clay
- Gravelly sand or sandy gravel (to target trial pit depth of 3.0m)
- 3 No. boreholes were undertaken as part of the site investigation works and generally observed silty / sandy gravels from 3.0m (trial pit target depth) to 8.8m below existing ground level

Ground water was noted at approximately 4.00 metres in one of the boreholes and in a small number of trial pits generally below 1.00 metres.

Infiltration tests were carried out at eight locations. Tests results indicated infiltration rates (f) ranged from 0.00000 m/min to 0.00238 m/min. Refer to Figure 6.2 below.

There is a variation in soil type across the site with low percolation noted in clay-based soils and test failures where high water table is present. Infiltration tests in the granular soils indicate that it should be suitable for dispersion of surface water.

6.3.2 Geology

Review of GSI's online mapping service ("Bedrock Geology") describes geology in the vicinity of the site as "Tournaisian Limestone".

GSI have classified the site's groundwater vulnerability as "high" for the majority of the site with "extreme" and "Rock at or near surface or Karst" in a small portion of the site. GSI also classified underlying gravel aquifers as "locally important".

Refer to Chapter 7.0 (Hydrology) of this EIAR for further comment regarding Hydrogeology.

Figure 6.1 Extract from Quaternary Sediments Map (source GSI Online Mapping Service)

Figure 6.2 Extract from IGSL Site Investigation Report – Infiltration Test Results

Test No.	Infiltration Rate (f) (metres / min)	Comment		
IT01	0.00000	Silt/Clay		
IT02	0.00054	Silty SAND		
IT03	0.00163	SAND		
IT04	0.00094	Silty SAND		
IT05	No Test Possible	Water Table @ 1.30m		
IT06	No Test Possible	Water Table @ 0.90m		
IT07	0.00238	Sandy GRAVEL		
IT08	0.00014	Silty SAND		

6.4 Characteristics of the Proposed Development

Site development works will include stripping of the 0.3m to 0.6m thick topsoil layer. It is expected that all stripped topsoil will be reused on site (incorporated into landscaping of back gardens and public open spaces).

Excavation of subsoil layers will be required in order to allow road construction, foundation excavation, drainage and utility installation and provision of underground attenuation of surface water. In general, the gradients follow the natural topography of the site. However, a cut and fill operation will be necessary to re-grade certain parts of the site. For instance, grading the internal road network to tie in to the link road and raising ends of runs to achieve adequate falls in the drainage network. Underlying subsoil layers generally comprise of sandy silts or gravelly sands and are also expected to be suitable for reuse as non-structural fill (e.g. build-up of back gardens areas or build-up of open spaces).

Importation of fill will be required beneath houses, driveways and to roadways (structural fill). Further information regarding importation of fill is included in Section 6.5.1.3 of this Chapter (quantity, type of material etc.)

6.5 Identification of Likely Significant Impacts

6.5.1 Construction Phase

6.5.1.1 Stripping of Topsoil

Removal of the existing topsoil layer will be required. As noted previously, it is expected that all stripped topsoil will be reused on site (incorporated into landscaping of back gardens and public open spaces).

Stripping of topsoil will result in exposure of the underlying subsoil layers to the effects of weather and construction traffic and may result in subsoil erosion and generation of sediment laden runoff.

Table 6.1 Preliminary Estimated Topsoil Volumes (+/- 10%)

	Volume (m³)
Topsoil Strip (300mm to 600mm thick layer)	45,000
Topsoil Reuse (landscaping of open spaces etc.)	45,000

6.5.1.2 Excavation of Subsoil Layers

Excavation of existing subsoil layers will be required in order to allow road construction, foundation excavation, drainage and utility installation and provision of underground attenuation of surface water.

Underlying subsoil layers generally comprise of sandy gravels or gravelly sands and are expected to be generally suitable for reuse as non-structural fill (e.g. build-up of back gardens areas or build-up of open spaces).

Table 6.2 Excavation of Subsoil / Reuse of Excavated Material (+/- 10%)

	Volume (m³)
Cut (excavation of subsoil layers as described in 6.5.1.2 above)	47,000
Reuse of Excavated Material as Non Structural Fill	47,000

6.5.1.3 Imported Fill

In the context of materials imported to site, these will be natural stones sourced from locally available quarries, greenfield / inert soil imported under a Waste Permit issued by the local authority; or materials that have been approved as by-products by the EPA in accordance with the EPA's criteria for determining a material is a by-product, per the provisions of article 27(1) of the European Communities (Waste Directive) Regulations, 2011.

The majority of imported soil replacement materials will be granular in nature and used in the construction of road pavement foundations, drainage and utility bedding and surrounds. Materials will be brought to site and placed in their final position in the shortest possible time. Any imported material will be kept separate from the indigenous arisings from the site. All excavation to accommodate imported material will be precisely coordinated to ensure no surplus material is brought to site beyond the engineering requirement.

Table 6.3 Imported Fill (+/- 10%)

	Volume (m³)
Fill (Total)	89,000
Reuse of Excavated Material (Non Structural Fill)	47,000
Imported Fill	42,000

6.5.1.4 Construction Traffic

Earthworks plant (e.g. dump trucks) and vehicles delivering construction materials to site (e.g. road aggregates, concrete deliveries etc.) have potential to cause rutting and deterioration of the topsoil layer and any exposed subsoil layers, resulting in erosion and generation of sediment laden runoff. This issue can be particularly noticeable at site access points (resulting in deposition of mud and soil on the surrounding road network). Dust generation can also occur during extended dry weather periods as a result of construction traffic.

6.5.1.5 Accidental Spills and Leaks

During the construction phase there is a risk of accidental pollution from the sources noted below. Accidental spills and leaks may result in contamination of the soils underlying the site.

- Storage of oils and fuels on site
- Oils and fuels leaking from construction machinery
- Spillage during refuelling and maintenance of construction machinery
- Use of cement and concrete during construction works

6.5.1.6 Geological Environment

Any excavations associated with development of the site are expected to be relatively shallow (e.g. no basement construction is proposed) and are not expected to impact on the underlying geology.

6.5.2 Operational Phase

On completion of the construction phase, there will be no further impact on soils and the geological environment.

6.5.3 'Do Nothing' Scenario

There will be no impact on soils and the geological environment if the development does not proceed.

6.6 Ameliorative, Remedial or Reductive Measures

6.6.1 Construction Phase

6.6.1.1 Stripping of Topsoil

Stripping of topsoil will be carried out in a controlled and carefully managed way and coordinated with the proposed staging for the development. At any given time, the extent of topsoil strip (and consequent exposure of subsoil) will be limited to the immediate vicinity of active work areas.

Topsoil stockpiles will be protected for the duration of the works and not located in areas where sediment laden runoff may enter existing surface water drains.

Topsoil stockpiles will also be located so as not to necessitate double handling.

Surface water runoff from areas stripped of topsoil will be directed to on-site settlement ponds where measures will be implemented to capture and treat sediment laden runoff prior to discharge of surface water at a controlled rate.

On-site settlement ponds will include geotextile liners and riprapped inlets and outlets to prevent scour and erosion.

6.6.1.2 Excavation of Subsoil Layers

Excavation of existing subsoil layers has been minimised. Cut type earthworks operations will not be required to achieve designed site levels.

Disturbed subsoil layers will be stabilised as soon as practicable (e.g. backfill of service trenches, construction of road capping layers, construction of building foundations and completion of landscaping). The duration that subsoil layers are exposed will be minimised in order to mitigate against weather effects.

Similar to comments regarding stripped topsoil, stockpiles of excavated subsoil material will be protected for the duration of the works. Stockpiles of subsoil material will be located separately from topsoil stockpiles.

Measures will be implemented to capture and treat sediment laden surface water runoff (e.g. sediment retention ponds, surface water inlet protection and earth bunding adjacent to open drainage ditches).

6.6.1.3 Imported Fill

As noted in section 6.5.1.3 above, importation of fill to site will be required.

No large or long-term stockpiles of fill material will be held on the site. At any time, the extent of fill material held on site will be limited to that needed in the immediate vicinity of the active work area.

Smaller stockpiles of fill, where required, will be suitably protected to ensure no sediment laden runoff enters existing surface water drains. Such stockpiles are to be located in order to avoid double handling.

6.6.1.4 Construction Traffic

Earthworks plant and vehicles delivering construction materials to site will be confined to predetermined haul routes around the site.

Vehicle wheel wash facilities will be installed in the vicinity of any site entrances and road sweeping implemented as necessary in order to maintain the road network in the immediate vicinity of the site.

Dust suppression measures (e.g. dampening down) will be implemented as necessary during dry periods.

6.6.1.5 Accidental Spills and Leaks

In order to mitigate against spillages contaminating underlying soils, all oils, fuels, paints and other chemicals will be stored in a secure bunded hardstand area.

Refuelling and servicing of construction machinery will take place in a designated hardstand area which is also remote from any surface water inlets (when not possible to carry out such activities off site).

6.6.1.6 Geological Environment

No mitigation measures are proposed in relation to the geological environment.

6.6.2 Operational Phase

On completion of the construction phase no further mitigation measures are proposed as there will be no further impact on soils and the geological environment.

6.6.3 'Do Nothing' Scenario

No mitigation measures are proposed in relation to soils and the geological environment if the development does not proceed.

6.7 Predicted Impact of the Proposed Development

6.7.1 Construction Phase

Implementation of the measures outlined in Section 6.6.1 will ensure that the potential impacts of the proposed development on soils and the geological environment do not occur during the construction phase and that any residual impacts will be short term.

6.7.2 Operational Phase

There are no predicted impacts arising from the operational phase.

6.7.3 'Do Nothing' Scenario

There are no predicted impacts should the proposed development not proceed.

6.8 Monitoring

Proposed monitoring during the construction phase in relation to the soil and geological environment are as follows:

- Adherence to Outline Construction Management Plan
- Construction monitoring of the works (e.g. inspection of existing ground conditions on completion of cut to road formation level in advance of placing capping material, stability of excavations etc.).
- Inspection of fuel / oil storage areas.
- Monitoring cleanliness of adjacent road network, implementation of dust suppression and provision vehicle wheel wash facilities.
- Monitoring of contractor's stockpile management (e.g. protection of excavated material to be reused as fill, protection of soils for removal from site from contamination)
- Monitoring sediment control measures (sediment retention ponds, surface water inlet protection etc.)

No ongoing monitoring is proposed on completion of the construction phase.

6.9 Reinstatement

All temporary construction compounds and site entrances are to be removed upon completion of the construction phase. Such areas are to be reinstated in accordance with the landscape architects plan and engineer's drawings.

All construction waste and / or scrapped building materials are to be removed from site on completion of the construction phase.

Oil, fuel etc. storage areas are to be decommissioned on completion of the construction phase. Any remaining liquids are to be removed from site and disposed of at an appropriate licenced facility.

All sediment control measures (e.g. sediment retention ponds) are to be decommissioned on completion of the construction phase. Such areas are to be reinstated in accordance with the landscape architects plan and engineer's drawings.

6.10 Interactions and Potential Cumulative Impacts

6.10.1 Interactions

Traffic and Transportation

Delivery of materials to site (e.g. aggregates for road construction, concrete for foundations, delivery of construction plant to site) will lead to potential impact on the surrounding road network.

Water and Hydrology

Stripping of topsoil will result in exposure of the underlying subsoil layers to the effects of weather and construction traffic and may result subsoil erosion and generation of sediment laden surface water runoff.

Waste Management

Oil, fuel etc. storage areas are to be decommissioned on completion of the construction phase. Any remaining liquids are to be removed from site and disposed of at an appropriate licenced facility.

Noise and Vibration

Development of the site will result in a level of construction related noise and vibration

Air Quality

Dust generation can also occur during extended dry weather periods as a result of construction traffic.

Flora and Fauna

Removal of the existing topsoil layer will be required across the site as well as removal of some trees, hedgerows etc.

6.10.2 Potential Cumulative Impacts

Other developments currently under construction and other committed development in the vicinity of the site have been considered and are likely to have similar impacts during the construction phase in relation to soils and geology.

Should the construction phase of any developments coincide with development of the site, potential cumulative impacts are not anticipated once similar ameliorative, remedial and reductive measures are implemented.

6.10.3 Unplanned Events

The following accidents & disasters involving soils during construction could potentially give rise to a serious incident putting people at risk:

- Collapse of trench during excavation works
- Accidental spills and leaks may result in contamination of the soils underlying the site.

With the implementation of the aforementioned mitigation measures, the likelihood of such events occurring would be local and not significant.

On completion of the construction phase, there will be no further unplanned events anticipated on soils and the geological environment.

6.10.4 Risks to Human Health

The following risk to human health from soils and the geological environment can occur during construction:

Dust generation can also occur during extended dry weather periods as a result of construction traffic.

With the implementation of the aforementioned mitigation measures, the likelihood of such events occurring would be local and not significant

APPENDIX 6.A Ground Investigation Report

Ground Investigations Ireland Ltd., July 2017

PROPOSED HOUSING DEVELOPMENT CAPDOO CLANE FOR ARDSTONE

DBFL CONSULTING ENGS

CONTENTS

I INTRODUCTION
II FIELDWORK
III TESTING
IV DISCUSSION
SUMMARY

APPENDICES

I	BOREHOLE RECORDS
II	TRIAL PIT RECORDS
III	PLATE BEARING TESTS
IV	DYNAMIC PROBES
\mathbf{V}	PERCOLATION BRE DIGEST 365
VI	LABORATORY TESTS
VII	SITE LOCATION PLAN

FOREWORD

The following Conditions and Notes on Site Investigation Procedures should be read in conjunction with this report.

General.

Recommendations made, and opinions expressed in the report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held for conditions which have not been revealed by exploratory work, or which occur between exploratory hole locations. Whilst the report may suggest the likely configuration of strata, both between exploratory hole locations, or below the maximum depth of the investigation, this is only indicative, and liability cannot be accepted for its accuracy.

Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction below or close to the site.

Boring Procedures.

Unless otherwise stated, the 'Shell and Auger' technique of soft ground boring has been employed. All boring operations sampling and/or logging of soils and in-situ testing complies with the recommendations of the British Standard Code of Practice BS 5930 (1999), 'Site Investigation' and BS 1377:1990, 'Methods of test for soils for civil engineering purposes'.

Whilst the technique allows the maximum data to be obtained in soft ground, some disturbance and variation of soft and layered soils is unavoidable. Attention is drawn to this condition, whenever it is suspected. Where cobbles and boulders are recorded, no conclusion should be drawn concerning the size, presence, lithological nature, or numbers per unit volume of ground.

Where peat has been encountered during siteworks, samples have been logged in accordance with the Von Post Classification (ref. Von Post, L. 1992. Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 & Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QJEG, Vol. 19, 1986).

Routine Sampling.

Undisturbed samples of soils, predominantly cohesive in nature are obtained unless otherwise stated by a 104mm diameter open-drive tube sampler. In granular soils, and where undisturbed sampling is inappropriate, disturbed samples are collected. Smaller disturbed samples are also recovered at intervals to allow a visual examination of the full strata section.

In-Situ Testing.

Standard penetration tests, utilising either the standard split spoon sampler or solid cone and automatic trip-hammer are conducted unless otherwise where required by instruction. Subsequent to a seating drive of 150mm, a summation for the number of blows for 300mm penetration is recorded on the boring records together with the blow count for each 75mm penetration. In cases where incomplete penetration is obtained, the numbers of blows for the recorded value of penetration are noted. In coarse granular soils, a cone end is fitted to the sampler and a similar procedure adopted.

Groundwater.

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water

level.

Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage condition, tidal variation or other causes.

Retention of Samples.

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material is discarded. Unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

REPORT ON A SITE INVESTIGATION FOR A HOUSING DEVELOPMENT AT CAPDOO CLANE COUNTY KILDARE FOR ARDSTONE RESIDENTIAL

DBFL CONSULTING ENGINEERS

Report No 20159

JULY 2017

I Introduction

A major residential development is planned for a site located at Capdoo in Clane, County Kildare.

A comprehensive investigation of sub soil conditions in the area of development has been ordered by DBFL Consulting Engineers on behalf of Ardstone Residential Fund.

The programme of the field investigation included the construction of boreholes, trial pits and dynamic probes to establish geotechnical criteria on which to base foundation and infra-structural design. Work was carried out in accordance with BS 5930, Code of Practice for Site Investigations (1999).

In addition plate bearing tests were scheduled to determine in situ CBR values while soakaway testing was performed in several locations in accordance with BRE Digest 365.

A programme of laboratory testing to confirm geotechnical and environmental soil parameters followed site operations.

This report includes all factual data pertaining to the project and comments on the findings relative to foundation and infrastructural design.

II Fieldwork

The site is predominantly a green field one located at Capdoo in Clane. A site location map and a drawing indicating the exploratory positions are enclosed in Appendix VII. This has been provided by DBFL engineers.

The various exploratory positions have been determined by DBFL and set out by the site engineer. Locations have been referenced to national grid and O.D. levels have been established.

Each location was electronically scanned to ensure that underground services were not disrupted. At borehole locations a trial pit was opened by hand to a depth of 1.20 metres to confirm this.

The scope of the field investigation included the following elements:

- * 3 nr. Conventional Boreholes
- * 23 nr Machine Excavated Trial Pits
- * 20 nr. Plate Bearing Tests (In Situ CBR)
- * 50 nr H.D. Dynamic Probes
- * 8 nr Percolation Tests to BRE Digest 365

Following the field operations samples were selected for laboratory analysis. This included standard geotechnical testing and detailed environmental analysis carried out by specialist laboratory.

a.Boreholes

The exploratory holes were bored with conventional 200mm cable-tool methods using a Dando 2000 Rig. One re-bore (BH02A) was carried out after shallow refusal in BH02.

Detailed geotechnical records are contained in Appendix I to this report - the records give details of stratification, sampling, in-situ testing and groundwater. Note is also taken of any obstructions to normal boring requiring the use of the heavy chisel for advancement.

Some variation in stratification was indicated. At BH01 surface top soil overlies a thin stratum of brown sandy gravelly CLAY. From 1.10 to 8.80 metres, medium dense to dense silty sandy GRAVEL is penetrated, with refusal noted at 8.80 metres. Ground water was observed at 4.20 metres BGL.

Boreholes BH02 and BH02A encountered stiff to very stiff brown sandy gravelly CLAY below top soil to respective refusal depths of 3.90 and 3.20 metres.

In BH03, very stiff brown gravelly CLAY extends from 0.20 to 2.20 metres with dense underlying GRAVEL 2.20 to 3.30 metres. Boulders at 3.30 metres prevented further advancement. No ground water was encountered in BH02, BH02A and BH03.

Both boreholes BH2 and BH3 were dry during the investigation period.

b. Trial Pits

Trial pits were scheduled at twenty five locations. Because of access restraints TP01 and TP02 were omitted. Trial Pitting was carried out using a light tracked excavator under geotechnical engineering supervision. Samples were recovered at intervals, ground water was noted where relevant and detailed trial pit records prepared. These records are contained in Appendix II to this report with supporting photographs.

Top soil varying in thickness from 300mm to 600mm overlies the site. In the majority of trial pit locations a thin stratum of firm gravelly SILT/CLAY is then noted. This continues to depths between 1.00 and 2.00 metres. Below this stratum and directly below the top soil in some locations a stratum of silty or clayey gravelly SAND or sandy GRAVEL is found. Trial Pits continued to completion in this stratum at depths between 2.50 and 3.00 metres.

Ground water was noted in Trial Pits TP07 to TP12, associated with collapse of side walls in some instances. Some minor wall collapse was also recorded in dry non-cohesive soils.

c. Plate Bearing Tests

In situ CBR values were established by Plate Bearing Test at twenty one specified locations. Testing was carried out directly below the top-soil zone at a depth of approximately 0.50 metres. Test locations were referenced CBR05 to CBR25. Four locations CBR01 to CBR04 were not accessible.

A 450mm diameter steel plate is loaded incrementally and deflection is recorded. The plate is then off loaded and recovery measured (Load Cycle). The process is then repeated (Re-Load Cycle).

The equivalent CBR value is calculated for both cycles. Detailed individual results are presented in Appendix III and the data is summarised in the following table.

TABLE A CBR SUMMARY DATA

CBR at Load Cycle (%)	CBR at RE-Load (%)
	_ , ,
54.0	CO 7
	68.7
	3.7
	3.4
	0.2
1.0	1.5
3.7	5.0
5.1	7.1
2.5	3.6
1.0	3.1
N/A	N/A
4.3	6.1
1.2	3.1
2.6	5.5
4.1	6.0
	9.8
	2.2
	3.9
	10.0
	2.6
	1.7
1.6	4.6
	54.9 2.8 1.5 0.2 1.0 3.7 5.1 2.5 1.0 N/A 4.3 1.2 2.6 4.1 8.1 1.2 1.4 2.5 1.1 1.0

The high CBR values noted at locations CBR05 and CBR 19 may reflect coarse dry surface material. The results over the remainder of the site reflect average CBR values on load cycle of 2.3% with an average CBR value of 3.6% on reload.

A design CBR value of 3% would be appropriate for this site.

d. Dynamic Probes

Probing was scheduled at fifty locations to establish a pattern of soil strength with depth. Access was restricted at DP01 and DP02 and these probes were omitted. Forty-eight probes were completed.

Probing was in accordance with the heavy-duty probe specification of BS 1377: Part 9: 1990. In these tests, the soil resistance is measured in terms of the number of drophammer blows required to drive the test probe through each 100 mm increment of penetration. Probing is terminated when the blow count exceeds 25/100mm to avoid damage to the apparatus. Where loose material is present a single blow count may drive the apparatus in excess of 100mm. In this instance blow counts of zero may be recorded.

Some variation in probe resistances and associated soil strength were observed. Soft zones (defined by N_{100} values < 1) were noted in several locations. A dynamic probe resistance of $N_{100} = 3$ (with no dramatic underlying deterioration) would be the normal minimum requirement for conventional two storey house foundations.

Probe results are summarised with the depth to $N_{100} = 3$ indicated as well as soft unsuitable zones. Final probe refusal depths are also indicated, these depths are not indicative of rock horizon.

Probe No.		Depth to N ₁₀₀ = 3	Final Depth
DP03	0 - 0.30	0.30	1.00
DP04	0.80 - 1.30	1.70	3.20
DP05	0 - 0.20	0.30	1.40
DP06	0.80 - 1.90	2.20	2.60
DP07	0 - 1.80	2.00	2.40
DP08	0 - 1.60	1.70	2.70
DP09	0 - 0.20	0.60	3.10
DP10	0 - 0.30	0.70	3.60
DP11	0 - 0.10	0.30	1.70
DP12	0.80 - 1.40	1.60	2.50
DP13	0 - 0.80	0.90	5.00
DP14	0 - 1.10	1.20	1.50
DP15	0 - 0.20	0.50	2.00
DP16	0 - 0.30	0.60	2.50
DP17	0 - 1.80	1.90	5.00
DP18	0 - 1.60	1.70	2.90
DP19	0 - 0.50	0.60	3.60
DP20	1.80 - 2.40	0.70	3.60
DP21	0 - 0.20	0.40	1.50
DP22	0 - 0.20	0.40	3.50
DP23	0 - 1.80	2.00	4.80
DP24	0 - 1.50	1.70	5.00
DP25	0 - 0.20	0.40	2.60
DP26	0 - 0.20	0.40	2.00
DP27	0 - 0.20	0.50	5.00
DP28	0 - 0.20 0 - 1.00	1.20	1.60
DP29	0 - 1.00 0 - 0.50	1.00	4.00
DP30	0 – 0.30	0.70	3.50
DP31	0 - 0.30	0.70	4.80
	0 - 0.30	1.20	2.60
DP32	0 060		
DP33	0 - 0.60	0.80	2.60
DP34	0 - 0.20	0.40	5.00
DP35	0 000	0.40	1.20
DP36	0 - 0.80	1.00	5.00
DP37	0 - 0.50	1.20	3.70
DP38	0 - 1.40	1.50	2.60
DP39	0 - 1.30	1.40	5.00
DP40	0 - 0.40	1.00	5.00
DP41	0 - 0.30	0.50	5.00
DP42	0 - 0.70	1.00	2.80
DP43	0 - 0.80	1.00	2.00
DP44	0 - 0.20	0.80	1.40
DP45	0 - 1.00	1.20	3.40
DP46	0 - 0.20	0.60	2.40
DP47	0 - 0.40	0.70	1.20
DP48	0 - 0.40	1.00	2.00
DP49	0 - 0.50	0.60	3.00
DP50	0 - 1.50	1.70	4.90

e. BRE Digest 365 Soakaway

A total of eight percolation tests were scheduled.

Infiltration testing was performed in accordance with BRE Digest 365 'Soakaway Design'. To obtain a measure of the infiltration rate of the sub-soils, water is poured into the test pit, and records taken of the fall in water level against time. This operation is generally performed over two cycles of soakage and dispersion following initial soakage.

The infiltration rate is the volume of water dispersed per unit exposed area per unit of time, and is generally expressed as metres/minute or metres/second. In these calculations the exposed area is the sum of the base area and the average internal area of the pit sides over the test duration.

Records for each test are presented in Appendix V. The stratification and water table in each test pit is noted and a record of fall in water level with time is made.

Designs are based on the slowest infiltration rate, which is generally calculated from the final cycle. The infiltration rate (f) is calculated and the results for the individual tests indicate that the soils in the test areas are relatively impermeable with little or no infiltration recorded.

The results reflect the variation in ground conditions over the site area. In two locations a high water table was noted, precluding completion of the test. Impermeable clay matrix soils were also encountered and some percolation was achieved in the more granular soils.

The Infiltration Rate (f) for each location with brief comment is noted as follows:

Test No.	Infiltration Rate (f) (metres / min)	Comment			
IT01	0.00000	Silt/Clay			
IT02	0.00054	Silty SAND			
IT03	0.00163	SAND			
IT04	0.00094	Silty SAND			
IT05	No Test Possible	Water Table @ 1.30m			
IT06	No Test Possible	Water Table @ 0.90m			
IT07	0.00238	Sandy GRAVEL			
IT08	0.00014	Silty SAND			

III Testing

(a) In-Situ:

Standard penetration tests were carried out at approximate 1.00 metre intervals in the geotechnical boreholes to measure relative in-situ soil strength. N values are noted in the right hand column of the boring records, representing the blow count required to drive the standard sampler 300mm into the soil, following initial seating blows. Where full test penetration was not achieved the blow count for a specific penetration is recorded, or refusal is indicated where appropriate

The results of the tests are summarised as follows:

STRATUM	N VALUE RANGE	COMMENT			
Sandy GRAVEL	12 to 52	Medium Dense to Dense			
Gravelly CLAY	23 to 32	Stiff			

In several instances refusal of SPT apparatus was noted, probably on boulder obstructions and results are presented as blows for specific penetration and refusal.

(b) Geotechnical and Environmental Laboratory:

All samples from the boreholes and trial pits have been returned to the IGSL laboratory for initial visual inspection, a schedule of testing was prepared and tests as appropriate carried out. The programme of testing included the following elements and all results are presented in Appendix VI.

- a. Moisture Content and Classification (Liquid and Plastic Limits)
- b. Particle size distribution (Sieve Analysis / Hydrometer)
- c. Sulphate and pH determination.
- d. RILTA Environmental Suite

Geotechnical testing was carried out by IGSL in it's INAB accredited facility. Chemical and environmental testing was carried out by Chemtest Limited in their UKAS laboratory.

Classification

The liquid and plastic limits were established for several samples of the upper cohesive soils. Results reflect variation from clay matrix to silt matrix material, essentially material of similar origin. Moisture contents range from 9 to 18% and the material is of low plasticity and sensitivity to moisture content variation.

Grading

Grading tests were carried out on the main soil strata using wet sieve and hydrometer analysis as appropriate.

The grading curves reflect the variation in soil type over the site area. Clean sandy GRAVEL, finer silty SAND, gravelly SILT and gravelly CLAY have all been identified.

Sulphate and pH.

Three samples were selected for sulphate and pH analysis. Sulphate concentrations (SO4 2:1 extract) of from 0.010 to 0.017 g/l were established with an average pH of 8.3 No special precautions are necessary to protect foundation concrete from sulphate aggression. A sulphate design class of DS-1 (ACEC Classification for Concrete) is indicated for concentrations less than 0.5 g/l.

Environmental

Two soil samples were submitted for detailed environmental analysis to RILTA (WAC) parameters.

The results indicate that the soils can be classified as INERT with little or no elevated contaminant levels recorded. Material excavated from this site can be readily disposed of to a regular licensed landfill facility and no problems are anticipated with personnel operating on the site.

IV Discussion

The proposed residential development is for traditional housing on a site located at Capdoo in Clane, County Kildare.

The area is an undulating greenfield one with ground level varying from about 67.00 to 80.00 OD. Access to part of the site was restricted and a number of scheduled Trial Pits, CBR Tests and Probes were omitted following consultation with the client and engineer.

A comprehensive investigation of ground conditions has been carried out on the instructions of DBFL involving Borehole and Trial Pit investigation with supporting Dynamic Probes, Plate Bearing Tests and Percolation Tests.

It is assumed that the development will as far as possible follow existing contours, however some cut and fill operations may be required.

Ground water was noted at approximately 4.00 metres in one of the boreholes and in rare trial pits generally below 1.00 metres.

Foundations:

Soil strength has been determined by SPT tests in the three boreholes and by Dynamic Probe resistance in the fifty locations examined. Visual assessment of soil strength in the trial pits has also been used in assessing allowable bearing parameters.

Standard penetration tests in boreholes at 1.00 metre BGL were in excess of N = 20. This would suggest an allowable bearing pressure of 150 kN/sq.m. based on the lowest SPT value.

A Dynamic Probe resistance of $N_{100} = 3$ with an increasing underlying strength trend will permit an allowable bearing pressure of 100 kN/sq.m. Similarly a probe resistance of $N_{100} = 5$ will equate to 150 kN/sq.m.

Based on the data obtained we would suggest the use of traditional reinforced strip or pad foundations, founded at approximately 1.00 metre BGL and using an allowable bearing pressure of 100 kPa. This scenario will be applicable over most of the site. In about ten probe locations soft or weak soils were noted to depths in excess of the normal 1.00 metre. The relevant probes are DPs 4,6,7,8,12,17,18,23, 24 and 50. Apart from Probe 50, these are generally located in the northern section of the site.

Careful visual assessment of excavated formation will be essential to accurately define the soft zones which should be removed and replace with lean nix concrete up to base of reinforced foundation. It is quite likely that variation from granular to cohesive soils will occur over relatively short distances. Ideally individual structures (detached or semi-detached) should be founded on similar material to ensure that differential settlement is avoided.

Settlement of foundations under the indicated loads will be of the order of 10 to 15mm. In the mainly granular soils settlement should be relatively rapid. Settlement in the clay soils will be mote long term.

Well-reinforced foundations will assist in bridging any local discontinuities in the formation soils.

Ground Floor Slabs

The sub soils below the top-soil at a depth of about 0.50 metres should readily support lightly loaded ground floor slabs. All organic soils and all FILL material should be removed and imported hardcore infill should fully comply with current building regulations.

Excavation

Ground water was not observed at proposed foundation depth and should not be of concern in shallow excavation. While trial pit excavations remained stable over the short term of the investigation, some instability may occur in longer term excavations.

Some ground water may however be encountered in deep service trench excavations.

Statutory safety regulations prohibit personnel entering unsupported excavations greater than 1.20 metre deep, irrespective of apparent stability.

Roads and Pavements

CBR tests at shallow depth indicate an average CBR of about 3%. Excavated road or pavement formation should be inspected to ensure that all organic or unsuitable material is removed.

Percolation

The variation in soil type over the site area has been outlined in the detailed test sheets with low percolation noted in clay based soils and test failure where high water table is present. Infiltration tests in the granular soils indicate that it should be suitable for dispersion of surface water.

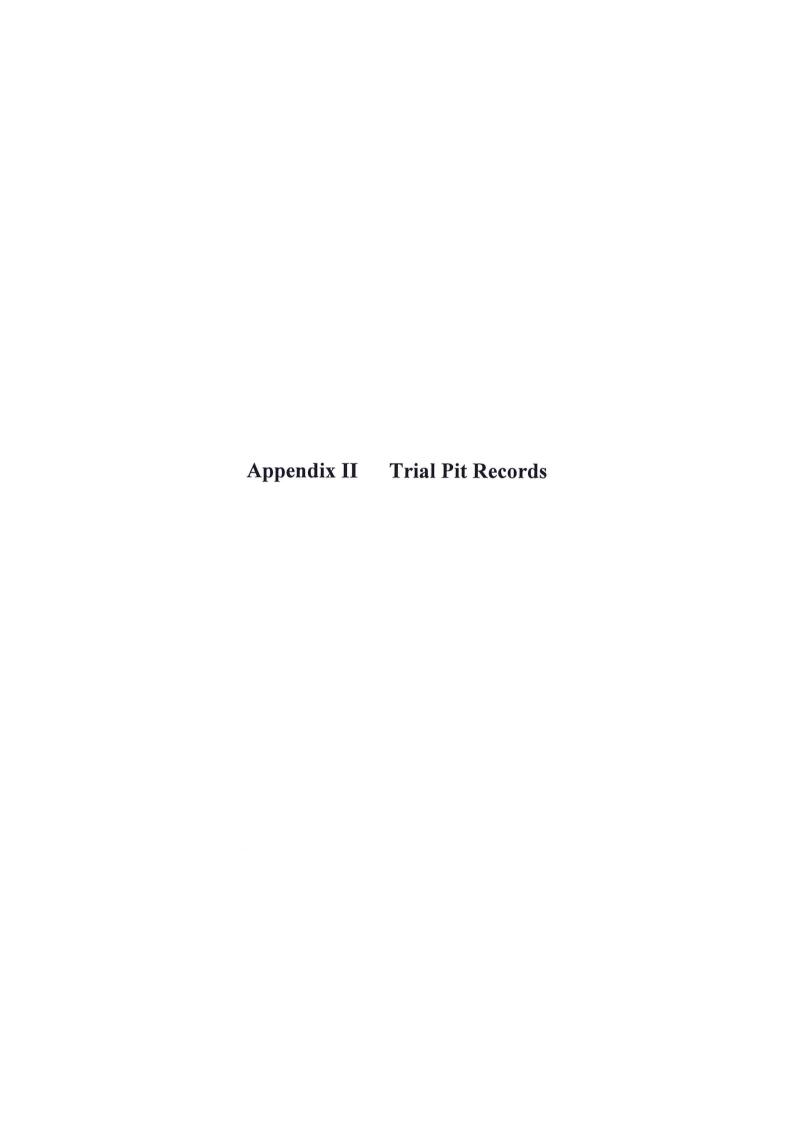
Concrete

Tests indicates low sulphate concentration (< 0.017 g/l) and pH of 8.3. The results indicate a design classification of DS-1 (ACEC Classification). No special precautions are deemed necessary to protect foundation concrete.

Environmental

Tests carried out on samples from this site indicate that the soils can be classified as INERT with extremely low contamination levels.

Material excavated from this site can be disposed of to licensed landfill or utilised within the site for non-engineering purposes, landscaping etc.


SUMMARY

Conventional shallow reinforced strip or pad foundations are recommended for this housing development with allowable bearing pressures as follows:

100 kPa for foundations placed at about 1.00 metre BGL using a dynamic probe resistance of $N_{100} = 3$ as a baseline. In areas where soft deposits occur depth of excavation to a suitable formation will increase. In these areas lean mix concrete can be used as backfill up to underside of main foundation.

Variation in founding medium from cohesive material (gravelly CLAY or SILT) to non-cohesive (SAND / GRAVEL) to intermixed zones (gravelly CLAY / clayey GRAVEL) can be expected over the site area.

IGSL/JC July 2017

1	/	1	\
10	£)	348	
3	00		
/	<u>1</u> 2	SI	-/

REPORT NUMBER

	GSL M		TRIAL PIT	REC	ORD					20	0159	
со	NTRACT	Capdoo, Clane						TRIAL	PIT NO.	TP		
LO	LOGGED BY L. Daniels CO-ORDINA				728,452.58 N			DATE S	STARTE			,
	ENT	Ardstone DBFL	GROUND LI	EVEL (m	79.4	6		EXCAV METHO	ATION		Ton Exc	
									Sample	es:	a)	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	Firm brownedium	L. wn slightly gravelly SILT/CLAY. Gra subangular to subrounded.	evel is fine to	× × × × × × × × × × × × × × × × × × ×	0.30	79.16						
	Brown silty fine to coarse subangular to subrounded			× × × × × × × × × × × × × × × × × × ×	0.60	78.86		AA78690				
1.0				\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				AA/009U	В	0.80		
2.0	Grey to bl	lack sandy fine to coarse subround	ed GRAVEL.			77.76	,	AA78691	В	1.80		
	Grey sligh to coarse	atly gravelly fine to medium SAND. (subangular to subrounded.	Gravel is fine	0	2.40	77.06	F	AA78692	В	2.50		
3.0	End of Tria	al Pit at 3.00m		0 .	3.00	76.46						
tabili	ndwater Co	nditions										
ener	al Remarks	1										

IGSL TP LOG 20159.GPJ IGSL.GDT 3/7/17

REPORT NUMBER

()	TRIAL PIT RECORD 20159											
со	NTRACT	Capdoo, Clane						TRIAL F	PIT NO.	TP()4 et 1 of 1	
CLI	LOGGED BY L. Daniels CLIENT Ardstone ENGINEER DBFL			CO-ORDINATES GROUND LEVEL (m)		687,669.68 E 728,454.80 N 75.82		DATE STARTE DATE COMPLE EXCAVATION METHOD		D 15/06/2017		ıvator
		55.2							Sample	s		iter
		Geotechnical Description		Pegend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
	Firm bro medium	L. wn slightly gravelly SILT/CLAY. Gra subangular to subrounded.	avel is fine to	× × × × × × × × × × × × × × × × × × ×	0.30	75.52		AA78693	В	0.50		
- - - - - -	GRAVEL	Ity fine to coarse subangular to sub. L with a medium cobble content and content. Cobbles are subangular to	d a low rounded.	x° x x x x x x x x x x x x x x x x x x		74.82		AA78694	В	1.20		
2.0	Stiff brown gravelly SILT/CLAY with a medium cobble content and a low boulder content. Gravel is fine to coarse subangular. Cobbles are subrounded. Boulders up to 400mm subrounded. End of Trial Pit at 2.00m		80 80 80 80 80 80	1.90	73.92 73.82		AA78695	В	1.90			
3.0												
	Groundwater Conditions Stability											
Gene	eral Remarl	KS.										

IGSL TP LOG 20159.GPJ IGSL.GDT 3/7/17

IGSL TP LOG 20159.GPJ IGSL.GDT 3/7/17

REPORT NUMBER

IRIAL PIT RECORD 20159													
cor	NTRACT	Capdoo, Clane						TRIAL F	PIT NO.	TP05 Sheet 1 of 1			
LOC	GGED BY	L. Daniels	CO-ORDINAT	ES	687,7 728,4	687,727.70 E 728,443.79 N			TARTE!	15/0			
CLII	ENT SINEER	Ardstone DBFL	GROUND LEVEL (m) 73.07				EXCAVATION 3.5 Ton Excava				avator		
									Sample	s	(F)	neter	
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)	
0.0	TOPSO			711		ă	Š	SS Res	T	۵		1 元 元	
1.0	Grey sliç	ghtly silty fine to coarse SAND.		\(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\fra	0.60	72.47		AA67769	В	0.60			
	Grey silt coarse s	y gravelly fine to coarse SAND. Grav subangular to subrounded.	el is fine to	x	1.60	71.47		AA67770	В	1.60			
-	End of T	rial Pit at 2.50m		X 0 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1	2.50	70.57		AA67771	В	2.50			
3.0 - - -													
Grou	ındwater C	Conditions											
Stab	ility												
Gene	eral Remar	ks				-	1.00						

REPORT NUMBER

IGSL		INIAL PIT I	NECU	עחי					20	0159	
CONTRACT	Capdoo, Clane						TRIAL I	PIT NO.	TP She	06 eet 1 of 1	1
LOGGED BY	L. Daniels		CO-ORDINATES		687,753.62 E 728,441.59 N			TARTE	D 15/06/2017		
CLIENT	Ardstone DBFL	GROUND LEV	71.06	5		EXCAV. METHO	ATION D	3.5	3.5 Ton Excavato		
							Sampl		s	a)	meter
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
Grey sli	ghtly silty fine to coarse SAND.		\(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}{2		70.56		AA67766	В	0.60		
	avelly cobbly fine to coarse SAND. e subrounded. Cobles are subroun		o	2.50	69.16		AA67767	В	1.80		
End of I	rial Pit at 2.50m						AA67768	В	2.50		
roundwater C	onditions							_			
tability											
eneral Remari	ks										

REPORT NUMBER

20150

	TRACT	0										
LOG		Capdoo, Clane						TRIAL P	IT NO.	TP(07 et 1 of 1	
	GED BY	L. Daniels	CO-ORDINAT	ES	687,7 728,4	774.50 E 196.33 N			TARTED		6/2017	
CLIE	NT NEER	Ardstone DBFL	GROUND LEV	GROUND LEVEL (m)		69.55		EXCAVA METHOI	OMPLET ATION D		6/2017 Ton Exc	avato
									Samples		(F)	heter
	Geotechnical Description			Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
1.0	TOPSOIL. Brown to grey silty fine to coarse subangular to subrounded GRAVEL with a medium cobble content.			8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		69.25		AA78667	В	0.50		
	Grey slig subangu	htly gravelly medium SAND. Grav lar.	el is fine	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1.30	68.25		AA78668	В	1.40		
2.0	Black slig fine suba	ghtly gravelly fine to medium SAN ngular.	D. Gravel is		2.00	67.55		AA78669	В	2.50		
3.0	End of Tr	ial Pit at 3.00m			3.00	66.55						
	dwater Co seepage a											
tabilit	ty											
enera	al Remark	cs						.,				

REPORT NUMBER

20150

/00	33L/									20	1159	
CON	ITRACT	Capdoo, Clane						TRIAL P	IT NO.	TP(08 et 1 of 1	
LOG	GED BY	L. Daniels	CO-ORDINAT	CO-ORDINATES			687,770.37 E 728,541.91 N			D 15/06/2017		
CLIE	NT INEER	Ardstone DBFL	GROUND LE	GROUND LEVEL (m)		68.38			EXCAVATION METHOD		Ton Exc	avato
									Sample	s	'a)	neter
		Geotechnical Descrip	tion	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSO	IL. irm light brown slightly gravelly medium subrounded.	SILT/CLAY. Gravel	× Q × x	0.30	68.08						
	is fine to	medium subrounded.		* × × × × × × × × × × × × × × × × × × ×				AA78664	В	0.50		
1.0	Grey slig to coarse	ghtly gravelly fine to medium S, e subangular to subrounded.	AND. Gravel is fine	00	0.80	67.58		AA78665	В	0.90		
	Grey to b Gravel is	olack slightly gravelly medium t fine subangular.	o coarse SAND.		1.40	66.98		AA78666	В	1.60		
2.0		due to wall collapse. rial Pit at 2.20m			2.20	66.18						
3.0												
Groun Slow s	ndwater Co seepage a	onditions at 1.4m										
i tabil i Vall c	ity collapse fro	om 1,4m									-	
iener	al Remark	(S										

IGSL TP LOG 20159.GPJ IGSL.GDT 3/7/17

REPORT NUMBER

1	TRIAL PIT RECORD										20159				
CON	NTRACT	Capdoo, Clane						1	TRIAL PIT NO. TP09 SHEET Sheet 1 of			1			
LOG	GED BY	L. Daniels	CO-ORDINAT	TES	687,8 728,5	313.53 E 508.36 N		DATE S	TARTEC	ED 15/06/2017					
CLIE	ENT INEER	Ardstone DBFL	GROUND LE	VEL (m)	67.21			EXCAV. METHO	ATION D	3.5 Ton Exc		avator			
									Sample	s	a	neter			
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)			
1.0	Stiff dark brown very gravelly slightly sandy SILT/CLAY. Gravel is fine to coarse subangular to subrounded.				0.30	66.91		AA78662	В	0.50					
		y clayey sandy fine to coarse subar ded GRAVEL. t due to wall collapse. rial Pit at 1.50m	earse subangular to			66.01 65.71		AA78663	В	1.20					
3.0															
Mode Stabil Wall d	Groundwater Conditions Moderate seepage at 0.8m Stability Vall collapse from 1.2m General Remarks														
Genei	al Remark	s													

REPORT NUMBER

20159

10	33L	•								20	1159		
COI	NTRACT	Capdoo, Clane						TRIAL F	PIT NO.	TP10 Sheet 1 of 1			
LOC	GGED BY	L. Daniels	CO-ORDINAT	ΓES		318.29 E 152.90 N		DATE S					
	ENT	Ardstone DBFL	GROUND LE	67.74	67.74			EXCAVATION METHOD		3.5 Ton Exca			
									Sample	s	a)	neter	
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)	
0.0	TOPSOIL. Firm brown slightly gravelly sandy SILT/CLAY. Sand is fine to medium. Gravel is fine to medium subangular to				0.30	67.44							
-	Subround Grey to I	ded. ight brown gravelly medium to coars ifine to coarse subangular to subrou	X 0 -X	0.60	67.14		AA78655 AA78656	В	0.50				
1.0	Firm grey to light brown sandy gravelly SILT with a low cobble content. Sand is fine to medium. Gravel is fine to coarse subangular to subrounded of limestone. Cobbles are subrounded of limestone.				1.00	66.74		AA78657	В	1.20			
-	content a coarse si up to 400	Stiff dark brown gravelly CLAY with a medium cobble content and a low boulder content. Gravel is medium to coarse subrounded. Cobbles are subrounded. Boulders up to 400mm subrounded.				66.24 66.04		AA78658	В	1.60			
2.0	End of pi End of Tr	t due to groundwater. rial Pit at 2.30m		000000000000000000000000000000000000000	2.30	65.44							
3.0													
	ndwater Condwater at												

Stability

General Remarks

IGSL TP LOG 20159.GPJ IGSL.GDT 3/7/17

REPORT NUMBER

20159

001									1			
CON	TRACT	Capdoo, Clane						TRIAL P	IT NO.	TP1	11 et 1 of 1	
LOG	GED BY	L. Daniels		CO-ORDINATES 687,869 728,445 GROUND LEVEL (m) 68.02			45.76 N		TARTED OMPLET	D 14/06/2017		
CLIE	INEER	Ardstone DBFL	GROUND LEV	GROOND ELVEL (III) 00.02				METHO		3.5	3.5 Ton Excavator	
									Samples		a)	meter
	Geotechnical Description			Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	Grey to light brown gravelly medium to coarse SAND. Gravel is fine to coarse subangular to subrounded of limestone. Stiff dark brown very gravelly slightly sandy SILT/CLAY Gravel is fine to coarse subangular to subrounded.			11 11 11 11 11 11 11 11 11 11 11 11 11	0.40	67.62						
			SILT/CLAY.	· · · · · · · · · · · · · · · · · · ·	0.70	67.32		AA78659	В	0.50		
1.0	araver is	s mile to coarse subangular to subre	, and each					AA78660	В	0.80		
	Black gra	avelly coarse SAND. Gravel is fine	to medium.	0	1.40	66.62		AA78661	В	1.50		
2.0	End of p End of T	it due to wall collapse. rial Pit at 2.00m		· · · · · · · · ·	2.00	66.02						
3.0												
∕lode	rate seepa	Conditions age at 1.4m										
Stabil Vall c	ity collapse fr	rom 1.4m										
Gener	al Remar	ks										

REPORT NUMBER

20150

100	336									20	1159	
CON	TRACT	Capdoo, Clane						TRIAL P	IT NO.	TP-	12 et 1 of 1	
LOG	GED BY	L. Daniels	CO-ORDINAT	res		84.26 E 11.11 N		DATE S		14/0	6/2017 6/2017	
CLIE	NT NEER	Ardstone DBFL	GROUND LE	VEL (m)	69.03	i		EXCAVA METHOI	ATION		Ton Exc	avator
		00.2							Samples	5	2	eter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	Firm bro	wn slightly gravelly sandy SILT/CI edium. Gravel is fine to medium s	_AY. Sand is subangular to	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0.40	68.63		AA78651	В	0.50		
1.0	Firm grecobble coarse s	y to light brown sandy gravelly SIL ontent. Sand is fine to medium. G ubangular to subrounded of limes ounded of limestone.	ravel is fine to	-X	0.90	68.13		AA78652	В	1.00		
-	content a	brown gravelly CLAY with a med and a low boulder content. Gravel abrounded. Cobbles are subround omm subrounded.	is medium to	× ° × × × × × × × × × × × × × × × × × ×	1.50	67.53		AA78653	В	1.60		
2.0	subangu low bould	wn to black fine to coarse subrour lar GRAVEL with a medium cobbl der content. Cobbles are subround mm subrounded.	e content and a ded. Boulders		2.00	67.03		AA78654	В	2.00		
	End of pi End of Ti	t due to groundwater. ial Pit at 2.50m		000	2.50	66.53						
3.0												
	ndwater Conductor at											
Stabil	ity					-				-		
Popor	al Remark	ve										
aci iel	ai neinafi											

IGSL TP LOG 20159.GPJ IGSL.GDT 3/7/17

	33L	1	RIAL PIT	RECC	KD					20	159	
COI	NTRACT	Capdoo, Clane						TRIAL F	PIT NO.	TP:	13 et 1 of 1	
LOC	GED BY	L. Daniels	CO-ORDINAT	TES	687,6 728,4	375.92 E 116.81 N		DATE S		14/0)6/2017)6/2017	-
CLIE	ENT	Ardstone DBFL	GROUND LE	VEL (m)	75.27	7		EXCAVA METHO		3.5	Ton Exc	avator
									Sample	s	a)	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	Firm bro	IL. own slightly gravelly SILT/CLAY. Gra subangular to subrounded.	vel is fine to	× × × × × × × × × × × × × × × × × × ×	0.30	74.97						
-	GRAVE	ilty fine to coarse subangular to subr L with a medium cobble content and content. Cobbles are subangular to	a low	* 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	0.60	74.67		AA78696	В	0.50		
2.0				10 10 10 10 10 10 10 10 10 10 10 10 10 1				AA78697	В	1.20		
	Black sa GRAVEL	ndy fine to coarse subounded to rou 	nded	8 × 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.50	72.77		AA78698	В	2.50		
3.0	End of T	rial Pit at 2.50m		0000	3.00	72.27						
Grou	ndwater C	onditions										
Stabi	lity											
Gene	ral Remar	ks										

REPORT NUMBER

100	38L		INIAL PII	TILOC	מווט					20	159	
CON	NTRACT	Capdoo, Clane						TRIAL F	PIT NO.	TP	14 et 1 of 1	
LOC	GED BY	L. Daniels	CO-ORDINA		687,6 728,4	523.19 E 111.99 N		DATE S DATE C		14/0)6/2017)6/2017	l.
CLIE	ENT	Ardstone DBFL	GROUND LE	VEL (m)	78.03	3		EXCAV/ METHO		3.5	Ton Exc	avator
					-				Sample	s	a)	meter
		Geotechnical Descriptio	on	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	Firm bromedium	L. wn slightly gravelly SILT/CLAY. subangular to subrounded.	Gravel is fine to	\(\frac{\lambda \frac{\lambda \frac{\fracc}\frac{\frac{\frac{\frac{\frac{\frac{\fracc}\frac{\frac{\f	0.40	77.63		AA78686	В	0.60		
1.0	GRAVEL	lty fine to coarse subangular to s with a medium cobble content a content. Cobbles are subangular	and a low	× 0 × × × × × × × × × × × × × × × × × ×	0.90	77.13		AA78687	В	1.20		
2.0				8				AA78688	В	2.00		
	Grey san	dy fine to coarse subrounded Gl	RAVEL.		2.30	75.73		AA78689	В	2.50		
3.0	End of Tr	ial Pit at 3.00m		0.00	3.00	75.03						
Grou	ndwater Co	onditions										
Stabil	lity										-	
3ene	ral Remark	s										

IGSL TP LOG 20159.GPJ IGSL.GDT 3/7/17

1	GSL	7	TRIAL PIT	REC	ORD					20)159	
СО	NTRACT	Capdoo, Clane							PIT NO.	TP		
CLI	GGED BY	L. Daniels Ardstone	CO-ORDINA GROUND LE		728,	619.03 E 356.62 N			STARTEI COMPLE ATION	D 14/0	eet 1 of 1 06/2017 06/2017 Ton Exc	8
ENC	SINEER	DBFL				-12						_
							0		Sample	es 	КРа)	romete
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
1.0		un slightly gravelly SILT/CLAY. Gravel subangular to subrounded.		× × × × × × × × × × × × × × × × × × ×	0.40	76.21 75.21		AA78679 AA78680		1.60		
3.0		due to wall collapse. ial Pit at 2.80m			2.80	73.81		AA78681	В	2.80		
Stabil	ity											
		se from 1.4m										
aenei	ral Remarks	5										

IGSL TP LOG 20159.GPJ IGSL.GDT 3/7/17

1	GSL	1	RIAL PIT	RECC	ORD					20	159	
СО	NTRACT	Capdoo, Clane						TRIAL F	PIT NO.	TP ⁻	16 et 1 of 1	
CLI	GGED BY	L. Daniels Ardstone	CO-ORDINAT		687,6 728,3 74.06	667.37 E 360.19 N		DATE S DATE C	OMPLE ATION	14/0 TED 14/0	6/2017 6/2017 Ton Exc	
ENG	GINEER	DBFL						METHO				
									Sample	s	(Pa)	ometer
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSOI	wn slightly gravelly SILT/CLAY. Gra	vel is fine to	\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\	0.40	73.66						
	medium	subangular to subrounded. Ity fine to coarse subangular to roun		× × × × × × × × × × × × × × × × × × ×	0.80	73.26		AA78682	В	0.60		
	with a m	are subrounded to rounded.	ider content.	\$\$\tau^{\text{constraints}} \text{ \				AA78683	В	1.20		
	End of pi	t due to boulder. ial Pit at 2.70m			2.70	71.36		AA78684	В	2.50		
3.0												
Grou	ındwater Co	onditions										<u> </u>
Stab	ility											
Gene	eral Remark	s										

	GSL		TRIAL PIT	REC	ORD					20	159	
со	NTRACT	Capdoo, Clane						TRIAL	PIT NO.	TP		
CLI	GGED BY ENT	L. Daniels Ardstone DBFL	CO-ORDINA GROUND LE		728,	724.68 E 357.77 N 9		DATE S DATE C EXCAVA METHO	ATION	D 14/0 TED 14/0	eet 1 of 1 06/2017 06/2017 Ton Exc	
									Sample	s		Te l
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	Grey silty with a my to rounded	y fine to coarse rounded to subango edium cobble content. Cobbles are	ular GRAVEL subrounded	\$ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.40	71.29		AA78672	В	0.60		
2.0	Grey sligt to mediur	ntly gravelly fine to coarse SAND. G n subrounded.	aravel is fine	8 0 8 0 0 0 0 0 0 0	2.00	69.69	,	AA78673	В	2.00		
3.0	End of Tri	al Pit at 3.00m			3.00	68.69	F	AA78674	В	3.00		
Groun	ndwater Co	enditions										
ienei	al Remark	s										

	GSL		TRIAL PIT	RECC	ORD					20)159	
СО	NTRACT	Capdoo, Clane						TRIAL F	PIT NO.	TP		
CLI	GGED BY ENT	L. Daniels Ardstone DBFL	GROUND LEV		687,7 728,3 69.26	776.84 E 864.82 N) 14/0 TED 14/0	eet 1 of 1 06/2017 06/2017 Ton Exc	
		55.2							Sample	s		ter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	Firm bro	wn slightly gravelly SILT/CLAY. Gi subangular to subrounded.	avel is fine to	X	0.40	68.86		AA78670	В	0.50		
1.0	GRAVEI boulder	prown silty fine to coarse subangul L with a medium cobble content ar content. Cobbles subangular to su s up to 400mm subrounded.	ar to angular d a low brounded.	0		68.36		AA78671	В	1.10		
- - 2.0 - -	End of pi	t due to boulder. rial Pit at 2.00m		\$ \tag{2} \tag	2.00	67.26						
3.0												
Grou	ndwater C	onditions		ı								
Gene	ral Remark	KS										

REPORT NUMBER

/00	33L/									20	159	
CON	TRACT	Capdoo, Clane	CO-ORDINAT	EC	607.	200 07 5		TRIAL P SHEET			et 1 of 1	
LOG	GED BY	L. Daniels	CO-ORDINAT	E5	687,7 728,3	29.97 E 19.16 N		DATE ST			6/2017 6/2017	
CLIE	NT INEER	Ardstone DBFL	GROUND LEV	/EL (m)	71.49)		EXCAVA METHOD	TION		Ton Exca	avato
									Sample	s	a)	meter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSO	ey to black fine to coarse SAND.		777 77 777 77 777 77 777 77 777 77	0.60	70.89						
1.0	Daikigie	y to black life to coalse SAND.						AA78675	В	0.80		
2.0	Black sa GRAVEL subround	ndy fine to coarse subounded to ro with a low cobble content. Cobbleded.			1.50	69.99		AA78676	В	1.60		
	End of pi End of Ti	t due to wall collapse. rial Pit at 2.60m			2.60	68.89						
3.0												
iroun	ndwater C	onditions										
i tabil i Vall c	ity collapse fr	om 1.5m										
iener	al Remari	KS										

REPORT NUMBER

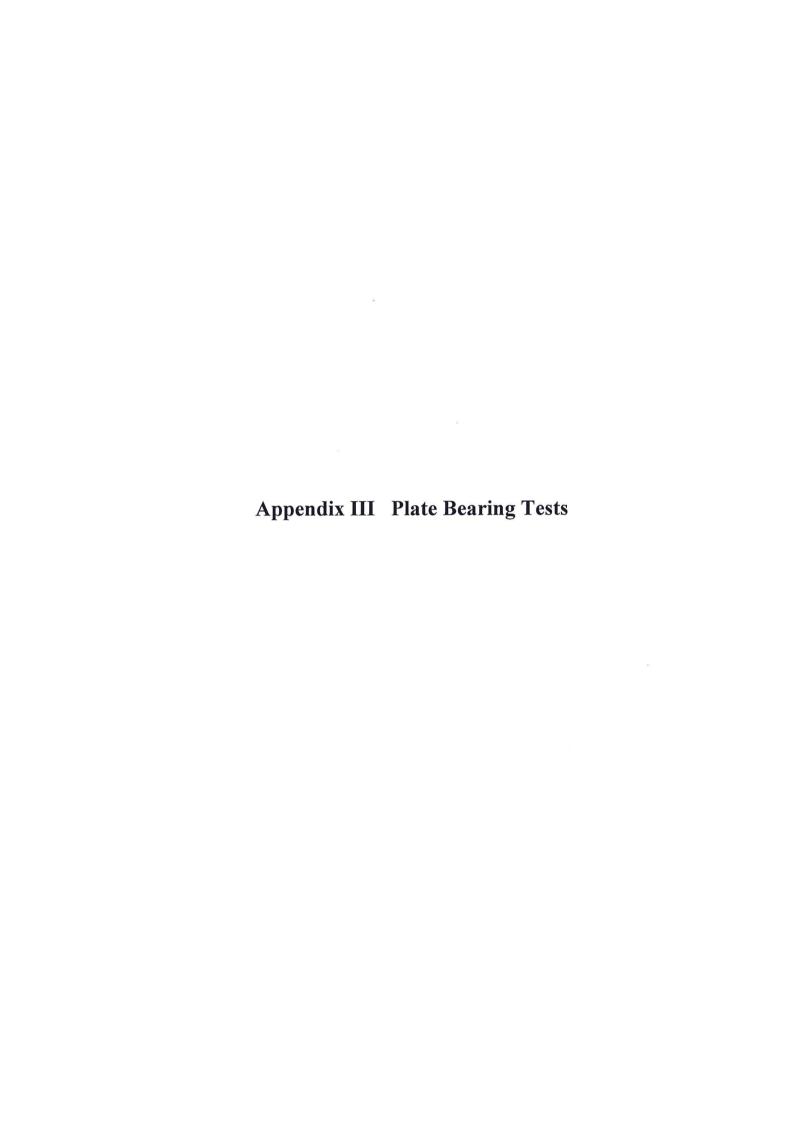
10	GSL/								20)159	
COI	NTRACT Capdoo, Clane						TRIAL I	PIT NO.	TP: She	20 eet 1 of 1	
LOC	GGED BY L. Daniels	CO-ORDINA	TES	687,6 728,3	622.57 E 313.25 N		DATES	TARTED	16/0	06/2017 06/2017	
	ENT Ardstone GINEER DBFL	GROUND LE	EVEL (m)	74.42	2		EXCAV. METHO	ATION		Ton Exc	
								Sample	s	a)	neter
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	Firm brown slightly gravelly SILT/CLAY. Gramedium subangular to subrounded.	avel is fine to	\(\frac{1}{2}\) \(\frac{1}{2}\	0.50	73.92		AA78677	В	0.70		
-1.0	Brown silty fine to coarse subrounded to an GRAVEL.	gular	× × × 8 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×	0.90	73.52		AA78678	В	1.00		
2.0	End of pit due to wall collapse. End of Trial Pit at 1.80m										
3.0											
Stabil	ndwater Conditions lity collapse from 0.9m		-								
Gener	ral Remarks										

1	33L/									20)159	
CON	TRACT	Capdoo, Clane						TRIAL F	PIT NO.	TP	21 et 1 of 1	í
LOG	GED BY	L. Daniels	CO-ORDINA	ATES	687,5 728,2	542.98 E 212.30 N		DATE S		16/0	06/2017	
CLIE ENG	ENT	Ardstone DBFL	GROUND L	EVEL (m)	74.33			EXCAVA METHO	ATION		06/2017 Ton Exc	
									Sample	s		eter
		Geotechnical Desc	cription	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSO	IL.		717 717 7 717 1	1							
	Firm bro medium	wn slightly gravelly SILT/Cl subangular to subrounded	LAY. Gravel is fine to	×0 × × × × × × × × × × × × × × × × × ×	0.30	74.03		AA67758	В	0.50		
1.0	Grey slig GRAVEL subround	htly silty fine to coarse suba with a medium cobble conded.	angular to rounded Itent. Cobbles are	× × × × × × × × × × × × × × × × × × ×	1.20	73.13		AA67759	В	1.30		
.0	Grey san GRAVEL subround	dy fine to coarse subround with a high cobble content led.	ed to rounded . Cobbles are	0000	1.80	72.53		AA67760	В	2.00		
	End of pit End of Tr	t due to wall collapse. ial Pit at 2.50m		0.0.00	2.50	71.83		AA67761	В	2.50		
.0										1		
round	dwater Co	onditions	2									
abilit all co	ty ollapse fro	om 1.8m										
nera	al Remark	s										

V	BEL		TRIAL PIT	REC	ORD					20	0159	
CON	TRACT	Capdoo, Clane							PIT NO.	TP		
LOGO	GED BY	L. Daniels	CO-ORDINA		728,	595.01 E 187.92 N			STARTE	D 16/0	eet 1 of 1 06/2017 06/2017	
CLIE		Ardstone DBFL	GROUND LI	EVEL (m) 75.3	6		EXCAV METHO			Ton Exc	
									Sample	s	a)	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
	TOPSOIL Firm brov Gravel is	 vn slightly gravelly SILT/CLAY with fine to medium subangular to subr	tree rootlets. ounded.	× × × × × × × × × × × × × × × × × × ×	0.30	75.06						
	Stiff brow subangul	n very gravelly SILT. Gravel is fine ar to subrounded.	to coarse	× _o × × × × × × × ×	0.60	74.76		AA67762	В	0.80		
1.0				× ° × × × × × × × × × × × × × × × × × ×				AA67763	В	1.20		
2.0 E	Brown silty o medium	y gravelly fine to medium SAND. Go subrounded.	ravel is fine	x° x x x x x x x x x x x x x x x x x x	2.00	73.36	A	AA67764	В	2.10		
B	Black coar Gravel is fi	se slightly gravelly fine to medium ine subangular.	SAND.	xo	2.50	72.86	, A	AA67765	В	2.60		
3.0 E	nd of Tria	ll Pit at 3.00m		· o · · · ·	3.00	72.36						
round	water Cor	nditions										
eneral	Remarks						-					

REPORT NUMBER

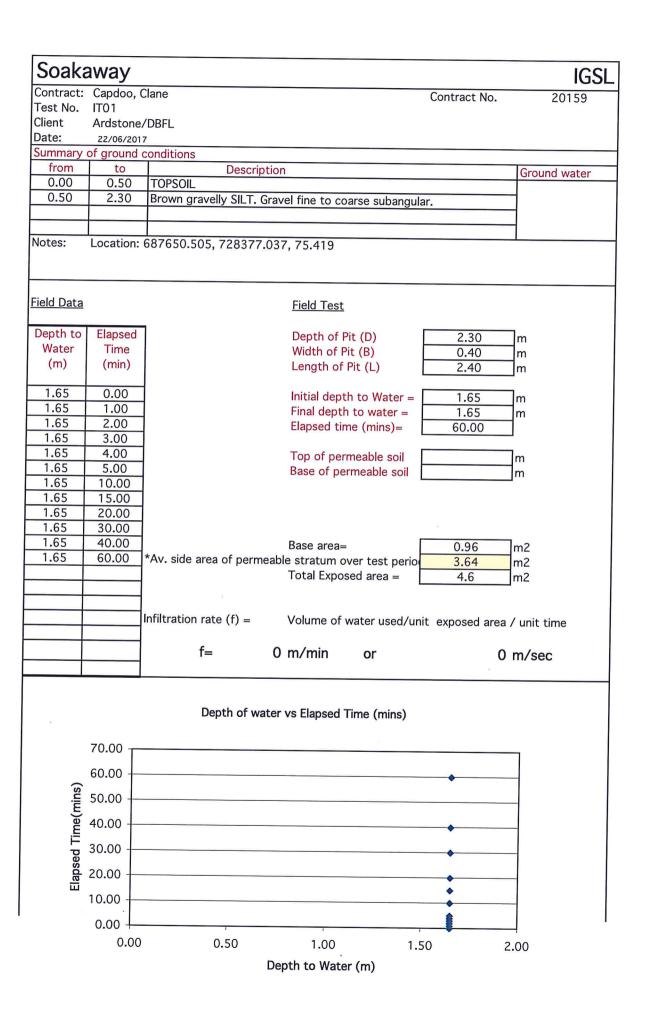
/D@	3SL/								20	159	
CON	TRACT Capdoo, Clane						TRIAL P	PIT NO.	TP:	23 et 1 of 1	
LOG	GED BY L. Daniels	CO-ORDINA	TES	687,6 728,2	34.91 E 214.75 N		DATE S		16/0	06/2017 06/2017	
CLIE	NT Ardstone NEER DBFL	GROUND LI	EVEL (m)	73.9	ſ		EXCAVA METHO	NOITA		Ton Exc	avator
	11 DOI 1							Sample	s	2	eter
	Geotechnica	l Description	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSOIL. Light brown slightly silty grave Gravel is fine to medium subr	elly fine to medium SAND. ounded.	\(\frac{1}{2}\frac{1}{		73.61		AA67755	В	0.50		
	Firm brown slightly gravelly sa Dark grey to black very sandy GRAVEL. Sand is medium to		*	1.20	72.71		AA67756	В	1.60		
2.0	GRAVEL. Sand is medium to	coarse.					AA67757	В	2.80		
3.0	End of Trial Pit at 3.00m		.000	3.00	70.91						
iroun	dwater Conditions										
tabili	ity										
enera	al Remarks										



REPORT NUMBER

IGSL INIAL PIT RECORD							20159					
CONTRACT Capdoo, Clane				TRIAL I				PIT NO.	TP24 Sheet 1 of 1			
LOGGED BY L. Daniels		CO-ORDINAT	CO-ORDINATES		687,695.94 E 728,217.70 N		DATE STARTED		D 16/06/2017			
CLIENT Ardstone GROUND LE ENGINEER DBFL		/EL (m) 72.38			EXCAVA METHO		3.5	3.5 Ton Excavator				
									Sample	s	g)	neter
		Geotechnical Description			Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	Brown silty fine to coarse subangular to subrounded GRAVEL with a medium cobble content and a low boulder content. Cobbles are subangular to rounded.			× × × × × × × × × × × × × × × × × × ×	0.30	72.08						
-				× × × × × × × × × × × × × × × × × × ×	0.60	71.78						
1.0				\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.70	70.68		AA67752	В	0.80		
- - - - - -	Black slig subangu	ghtly gravelly coarse SAND. Gravel i lar.	s fine		1.70	70.08		AA67753	В	1.70		
-	End of pi End of Ti	it due to wall collapse. rial Pit at 2.60m		0	2.60	69.78		AA67754	В	2.60		
3.0												
Groundwater Conditions												
Stability Minor wall collapse from 1.7m												
General Remarks												

TRIAL PIT RECORD						20159						
СО	NTRACT	Capdoo, Clane						PIT NO.	TP25			
LO	LOGGED BY L. Daniels CO-ORDINAT				728,216.34 N			SHEET Sheet 1 of 1				
CLIENT Ardstone GROUND LEVEL GR			EVEL (m	VEL (m) 70.94						5 Ton Excavator		
									Samples		a)	neter
			Legend	Depth	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)	
0.0	TOPSOIL.			1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	4	70.54						
1.0	Firm brown slightly gravelly SILT/CLAY. Gravel is fine to medium subangular to subrounded. Brown silty fine to coarse subangular to subrounded			× × × × × × × × × × × × × × × × × × ×	0.80	70.14		AA78699	В	0.60		
	Brown silty fine to coarse subangular to subrounded GRAVEL with a medium cobble content and a low boulder content. Cobbles are subangular to rounded. Brown sandy fine to coarse subrounded GRAVEL.			\$ \tag{8} \tag	1.20	69.74		AA78700	В	1.20		
				0000	1.60	69.34						
2.0								AA67751	В	1.80		
3.0	End of Tria	l Pit at 3.00m		0 .	3.00	67.94						
roun	dwater Con	ditions										
tabili	ty						_					
enera	al Remarks											


Page 2 of 2

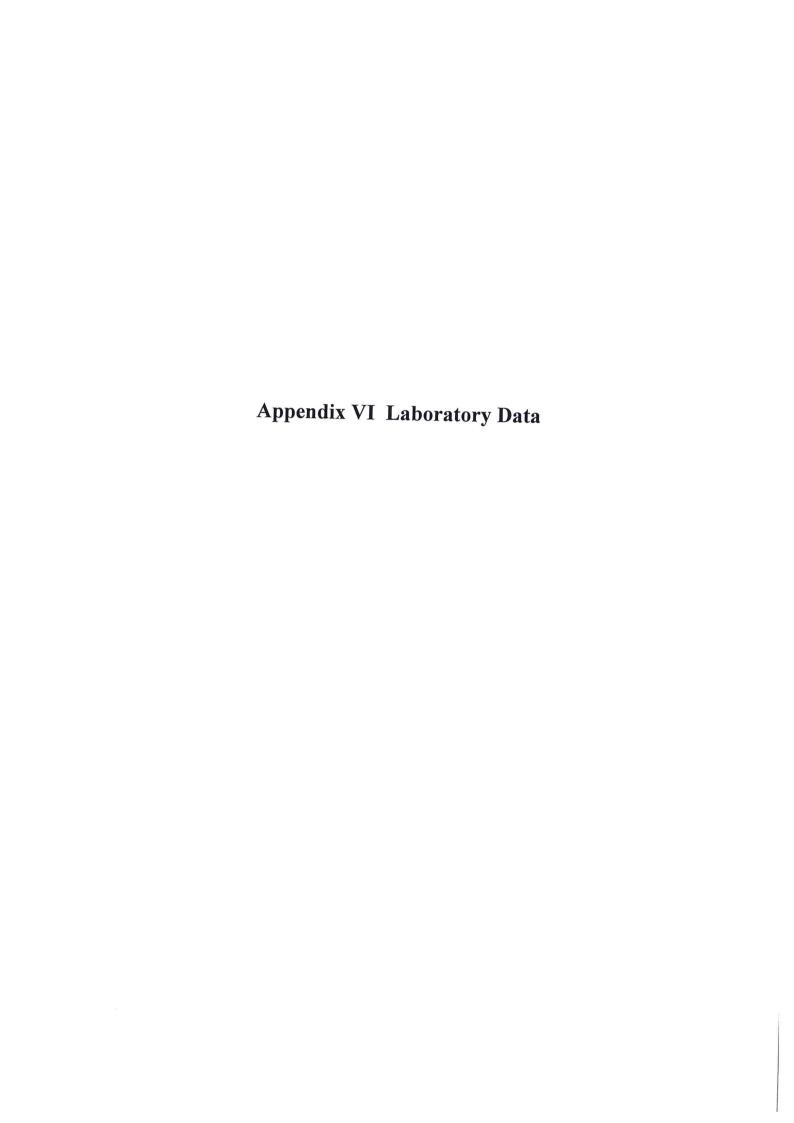
Page 1 of 2

Page 2 of 2

Page 2 of 2

Soakaway **IGSL** Contract: Capdoo, Clane Test No. Contract No. IT₀₂ 20159 Client Ardstone/DBFL Date: 22/06/2017 Summary of ground conditions from to Description 0.00 0.50 Ground water TOPSOIL 0.50 Black gravelly medium to coarse gritty SAND 2.50 Location: 687758.740, 728337.281, 69.924 Notes: Field Data Field Test Depth to Elapsed Depth of Pit (D) 2.50 Water Time m Width of Pit (B) (m) (min) 0.40 m Length of Pit (L) 1.70 m 1.66 0.00 Initial depth to Water = 1.66 1.67 1.00 m Final depth to water = 1.68 2.00 1.92 m Elapsed time (mins)= 90.00 1.69 3.00 1.70 4.00 Top of permeable soil 1.71 5.00 m Base of permeable soil 1.72 10.00 1.73 15.00 1.74 20.00 1.77 30.00 1.80 40.00 Base area= 1.85 0.68 60.00 *Av. side area of permeable stratum over test period m2 1.92 2.982 90.00 m2 Total Exposed area = 3.662 m2 Infiltration rate (f) = Volume of water used/unit exposed area / unit time f= 0.00054 m/min or 8.941E-06 m/sec Depth of water vs Elapsed Time (mins) 100.00 90.00 Elapsed Time(mins) 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 Depth to Water (m)

Contract	Kaway t: Capdoo,	CI				IG
Test No.	. ITO3	Clane			Contract No.	20159
Client	Ardstone	/DBFL				
Date:	21/06/201	7				
	y of ground	conditions				
from	to	D	escription			C
0.00	0.60 1.60	TOPSOIL				Ground water
1.60	2.50	Grey silty fine to	coarse SAND			1
	2.30	Grey silty grave	lly fine to coars	e SAND		
Notes:	Location:	687729.310, 72	8440.316, 72.	962		
ield Data	1		<u>Field</u>	l Test		
Depth to	Elapsed	1				
Water	Time		Dept	th of Pit (D) th of Pit (B)	2.50	m
(m)	(min)	·	l enc	th of Pit (B)	0.40	m
1 50	0.00		20119	, (L)	1.80	m
1.50	0.00		Initia	I depth to Water	= 1.50	m
1.52	1.00 2.00		Final	depth to water =	2.22	m
1.53	3.00		Elaps	ed time (mins)=	90.00	I
1.54	4.00		Ton	of manus . . .		
1.56	5.00		Base	of permeable soil of permeable soil		m
1.65	10.00		2400	or permeable soil		m
1.72 1.77	15.00 20.00					
1.82	30.00					
1.90	40.00		Poss		_	
2.06	60.00 *	Av. side area of p	Base a ermeable strat	area=		n2
2.22	90.00	,	Total	Exposed area =	0	12
				a process and a	3.336 n	12
		-file				
		nfiltration rate (f)	= Volum	e of water used/u	unit exposed area / i	unit time
		f_ 0.0				
		1= 0.0	00163 m/mi	n or	2.715E-05 m	n/sec
		Depth of	water vs Elapse	d Time (mins)		
	100.00					
_	90.00					
ıns)	80.00				•	
ciapsed Time(mins)	70.00					
Ĕ	60.00			_		
-	50.00			-	•	
ose	40.00					
<u>n</u>	30.00					
	20.00					
	10.00			•		
	0.00		-	-		
	0.00	0.50	1.00	1.50	2.00 2.50	,
					c	'


Soakaway **IGSL** Contract: Capdoo, Clane Contract No. 20159 Test No. **IT04** Client Ardstone/DBFL Date: 21/06/2017 Summary of ground conditions from to Description Ground water 0.00 0.50 TOPSOIL 0.50 1.90 Grey slightly silty fine to coarse SAND 1.90 2.50 Grey gravelly moderately cobbly fine to coarse SAND Notes: Location: 687749.826, 728441.334, 71.325 Field Data Field Test Depth to Elapsed Depth of Pit (D) 2.50 m Water Time Width of Pit (B) 0.40 m (m) (min) Length of Pit (L) 2.10 m 1.38 0.00 Initial depth to Water = 1.38 m 1.39 1.00 Final depth to water = 1.90 m 1.40 2.00 Elapsed time (mins)= 90.00 1.41 3.00 1.43 4.00 Top of permeable soil m 1.45 5.00 Base of permeable soil m 1.46 6.00 1.48 7.00 1.49 8.00 1.49 9.00 1.50 10.00 Base area= 0.84 m2 1.53 *Av. side area of permeable stratum over test period 15.00 4.3 m2 1.55 20.00 Total Exposed area = 5.14 m2 1.68 40.00 1.80 60.00 1.90 90.00 Infiltration rate (f) = Volume of water used/unit exposed area / unit time f= 0.00094 m/min or 1.574E-05 m/sec Depth of water vs Elapsed Time (mins) 100.00 90.00 Elapsed Time(mins) 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 0.00 0.50 1.00 1.50 2.00 Depth to Water (m)

IGSL Soakaway Contract: Capdoo, Clane 20159 Contract No. Test No. ITO5 Client Ardstone/DBFL Date: 21/06/2017 Summary of ground conditions Ground water Description from to 0.50 TOPSOIL 0.00 1.30m 0.30 Grey silty fine to coarse subangular to subrounded GRAVEL 1.60 Location: 687850.393, 728469.376, 68.013 Moderate seepage at 1.50m. Groundwater settled at 1.30m after a period of 30 minutes. Field Test Field Data Depth of Pit (D) 1.60 Depth to Elapsed Width of Pit (B) 0.40 Water Time m 1.80 (m) (min) Length of Pit (L) m NA NA Initial depth to Water = NA Final depth to water = NA m Elapsed time (mins)= NA Top of permeable soil m Base of permeable soil m Base area= 0.72 m2 *Av. side area of permeable stratum over test period **#VALUE!** m2 Total Exposed area = **#VALUE!** m2 Infiltration rate (f) = Volume of water used/unit exposed area / unit time f= #VALUE! m/min **#VALUE!** m/sec or Depth of water vs Elapsed Time (mins) 1.00 0.90 Elapsed Time(mins) 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0.00 5.00 10.00 15.00 20.00 Depth to Water (m)

IGSL Soakaway Contract: Capdoo, Clane Contract No. 20159 IT06 Test No. Client Ardstone/DBFL Date: 21/06/2017 Summary of ground conditions Ground water from Description to TOPSOIL 0.00 0.30 0.90m 0.30 1.20 Grey silty fine to coarse subangular to subrounded GRAVEL Location: 687855.724, 728492.341, 67.366 Notes: Moderate seepage at 1.20m. Groundwater settled at 0.90m after a period of 30 minutes. Field Test Field Data Depth of Pit (D) 1.20 Depth to Elapsed Water Time Width of Pit (B) 0.40 m (m) (min) Length of Pit (L) 1.50 m 1.20 0.00 Initial depth to Water = 1.20 m 0.90 30.00 Final depth to water = 0.90 m 0.90 60.00 Elapsed time (mins)= 60.00 Top of permeable soil m Base of permeable soil 0.6 m2 Base area= *Av. side area of permeable stratum over test period 0.57 m2 Total Exposed area = 1.17 m2 Infiltration rate (f) = Volume of water used/unit exposed area / unit time -0.0026 m/min or -4.274E-05 m/sec Depth of water vs Elapsed Time (mins) 70.00 60.00 Elapsed Time(mins) 50.00 40.00 30.00 20.00 10.00 0.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 Depth to Water (m)

Soakaway **IGSL** Contract: Capdoo, Clane Contract No. 20159 Test No. IT07 Client Ardstone/DBFL Date: 22/06/2017 Summary of ground conditions Ground water from Description to TOPSOIL 0.70 0.00 0.70 1.30 Brown slightly sandy gravelly SILT Grey slightly silty sandy fine to coarse gritty GRAVEL 1.30 1.80 1.80 2.30 Brown gravelly fine to medium SAND Notes: Field Data Field Test Depth to Elapsed Depth of Pit (D) 2.30 Water Time Width of Pit (B) 0.40 m (m) (min) Length of Pit (L) 2.00 m 1.70 0.00 Initial depth to Water = 1.70 m 1.71 1.00 Final depth to water = 2.30 m 1.72 2.00 Elapsed time (mins)= 90.00 1.74 3.00 1.75 4.00 Top of permeable soil m 1.76 5.00 Base of permeable soil 1.80 10.00 1.83 15.00 1.86 20.00 1.92 30.00 1.96 40.00 0.8 m2 Base area= 2.15 60.00 *Av. side area of permeable stratum over test period 1.44 m2 2.30 90.00 Total Exposed area = 2.24 m2 Infiltration rate (f) = Volume of water used/unit exposed area / unit time f= 0.00238 m/min or 3.968E-05 m/sec Depth of water vs Elapsed Time (mins) 100.00 90.00 Elapsed Time(mins) 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 2.00 0.00 0.50 1.00 1.50 2.50 Depth to Water (m)

Soakaway **IGSL** Contract: Capdoo, Clane Contract No. 20159 Test No. **IT08** Client Ardstone/DBFL Date: 22/06/2017 Summary of ground conditions Ground water Description from to 0.50 TOPSOIL 0.00 Brown gravelly SILT. Gravel fine to coarse subangular. 1.90 0.50 2.40 Black gravelly coarse SAND. 1.90 Location: IT08,687748.117,728233.974,70.390,, Notes: Field Data Field Test 2.40 Depth of Pit (D) Depth to Elapsed m Width of Pit (B) 0.40 m Water Time Length of Pit (L) 2.00 m (m) (min) 1.33 1.33 0.00 Initial depth to Water = m 1.00 Final depth to water = m 1.33 1.42 Elapsed time (mins)= 90.00 1.33 2.00 1.34 3.00 1.34 4.00 Top of permeable soil m 1.34 5.00 Base of permeable soil m 1.36 10.00 1.37 15.00 1.37 20.00 1.37 30.00 1.39 40.00 Base area= 8.0 m2 1.40 60.00 *Av. side area of permeable stratum over test period 4.92 m2 1.42 90.00 Total Exposed area = 5.72 m2 Volume of water used/unit exposed area / unit time Infiltration rate (f) = f= 0.00014 m/min 2.331E-06 m/sec or Depth of water vs Elapsed Time (mins) 100.00 90.00 Elapsed Time(mins) 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 1.34 1.36 1.38 1.40 1.42 1.44 1.32 Depth to Water (m)

Tmn. Pl II Bey 02/10	Id .uu			
Id .uu	Id .uu		C	
Id .uu	Id .uu		Ŧ	
Id .uu	Id .uu		2	
Id .uu	Id .uu		5	
Id .uu	Id .uu		C	
Id .uu	Id .uu		•	
Id .uu	Id .uu		6	
Id .uu	Id .uu	ı	ñ	
Id .uu	Id .uu	ı	ш	
Id .uu	Id .uu	į,		
ē	ē	-	-	
ē	ē	1	$\overline{}$	
ē	ē	1	Ц	
ē	ē			
			\mathbf{c}	
۲	۲		c	
-	-		2	
	•	ı	-	

1 of 1

24-07-17

4 Brown

H Byrne (Laboratory Manager)

R80600.Pl.xls

Test Report

Determination of Moisture Content, Liquid & Plastic Limits

Materials Laboratory Unit J5, M7 Business Park

IGSL Ltd

Newhall, Naas Co. Kildare 045 846176

Tested in accordance with BS1377:Part 2:1990, clauses 3.2*, 4.3, 4.4 & 5.3

Customer DBFL Consulting Engineers, Ormond House, Upper Ormond Quay, Dublin 7, Ireland Contract Name: 20159 Contract No. R80600 Report No.

Capdoo, Clane

Samples Received: 04-07-17 Date Tested: 05-07-17

		Т	Т	_	_			Т	Т	_	_		Т		_	_	_							_	_
otion		Grey/brown slightly sity, slightly sandy, GRAVEL with many cobbles	Dark brown slightly sandy, gravelly, CLAY	Brown sandy cravelly CLAV with	devely only will loomairs	Dark brown very sandy very gravelly SILT	Dark brown sandy, gravelly, SILT	Brown sandy gravelly CLAY													NOTE: *Clause 3.2 of BS1377 is a "withdrawn" standard due to publication of ISO17892-1-2014		The results relate to the specimens tested. Any remaining material will be retained for one month	Page	L
Description		Grey/brown slightl	Dark brown sli	Brown sandy	R	Dark brown ve	Dark brow	Brown sar													blication o		will be re	Date	
Classification	(BS5930)		S	-	7			CL													rd due to pu	ccreditation	ing materia)	
Preparation Liquid Limit	Clause		4.4	4.4		4.4	4.4	4.4													drawn" standaı	Opinions and interpretations are outside the scope of accreditation.	d. Any remain) J	
Preparation			MS	MS	WO	OM.	WS	MS													377 is a "with	is are outside	ecimens teste	Approved by	
%	<425µm		22	58	40	2	<u>ا</u> ر	72													e 3.2 of BS1	nterpretation	ate to the sp		
Plasticity	Index	Ž.	13	10	ΔN	2	L	9										Domorko.	nellialks.		NOTE: *Claus	Opinions and i	The results rela		
Plastic	Limit %		17	18	dΝ	QN	INI	18															٦		
Liquid	% IIIII		30	28	24	20	2 8	87										- Bulk Distur	U - Undisturbed					ed to approve	
Moisture	% Illalino	2	7	12	41	6.8	Ç	0										Sample Type: B - Bulk Distrirhed		•				Persons authorized to approve reports	
Sample	B B		ء د	B	В	В	a	ם										S			bothod of	int mothod	יייני ווופוווסת	<u>. </u>	
Lab. Ref	A17/3239	A17/3940	A 17/0044	A17/3241	A17/3245	A17/3246	A17/3250	201										þí	D	0	4.3 Cone Penetrometer definitive method	4.4 Cone Penetrometer one point mothod		boratory	20.00
Depth (m)	7.0	10		5. 1	0.5	0.8	1.2											WS - Wet sieved	AR - As received	NP - Non plastic	3 Cone Penet	4 Cone Penet		rials La	
Sample No. Depth (m)	AA56212	AA56214	AA56217	4470000	AA/ 8022	AA78660	AA67763								1		٦	Preparation: W	Ā	Ź	Liquid Limit 4.3	Clause: 4.		IGSL Ltd Materials Laboratory	
ВН/ТР	BH01	BH02	BH03	TPOO	50 1	1P11	TP22										7	Notes: Pr			j	O		IGSL	

DBFL Consulting Engineers,Ormond House, Upper Ormond Quay, Dublin 7, Ireland 28 37.5 50 53 63 AILED IN SCOPE REG NO. 17 SO bι 10 5.3 Grey/brown slightly clayey/silty, sandy, GRAVEL with many cobbles Sample size did not meet the requirements of BS1377 3.35 7 05-07-17 81.1 A17/3237 9.0 0.425 6.0 Vote: Clause 9.2 and Clause 9.5 of BS1377-Part 2:1990 have been superseded by ISO17892-4:2016 21.0 R80628 Date Testing started £90.0 Lab. Sample No. Customer: Report No. Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5 Determination of Particle Size Distribution Capdoo , Clane AA56207 (note: Sedimentation stage not accredited) 04-07-17 20159 BH01 2.00 TEST REPORT Date Received Contract No: Sample Type: Sample No. Description: Depth (m) Contract: BH/TP: Remarks 100 90 80 20 09 50 20 4 30 Percentage passing (%) COBBLES GRAVEL SAND passing 53 44 35 29 26 22 20 17 10 ∞ ~ particle 75 63 50 37.5 28 20 11 10 6.3 5 3.35 2 2 1.118 0.6 0.15

Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager) 1 of 1 Page no: 11-07-17 GRA VEL Date: SAND HEgen Approved by: Sieve size (mm) SILT CLAY IGSL Ltd Materials Laboratory

100

10

0.1

0.01

0.001

0.0001

10 -

SILT/CLAY

TEST REPORT Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5 (note: Sedimentation stage not accredited)

	_									_															-			
), 13जा						ublin 7, Ireland					S	82 87 83 85 85 85 87												100		Page no:	1 of 1	(Laboratory Manager)
DEIALLED IN SCOPE REB NO. 1337						e, Upper Ormond Quay, Du						3.33 3.3 3.3 10 14												10	GRA VEL	Date:	24-07-17	uality Manager) H Byrne
				A17/3238		DBFL Consulting Engineers, Ormond House, Upper Ormond Quay, Dublin 7, Ireland	05-07-17	9		2016	S	6.0 S4.0 6.0	0											1	m) SAND	l by:	see-	Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)
	No. R80664			Lab. Sample No.			Date Testing started	lty, gravelly, SAN		30 have been superseded by ISO17892-4;	8	90.												0.1	Sieve size (mm)	Approved by:	H Byen	s authorised to app
dited)	S9 Report No.	Capdoo , Clane	_	AA56210 Lab. Sa		Customer:	04-07-17 Date Te	Dark brown clayey/silty, gravelly, SAND		Nate: Clause 9.2 and Clause 9.5 of BS1377-Part 2:1990 have been superseded by ISO17892-4:2016														0.01	SILT			Persor
(note: Sedimentation stage not accredited)	No: 20159		BH01		ype: B) 5.00				Note: Clause														0.001	CLAY	30	ratory	
(note: Sedimentat	Contract No:	Contract:	BH/TP:	Sample No.	Sample Type:	Depth (m)	Date Received	Description:	ù	Remarks			100	06	08	2 %)	60 60 60 60 60 60 60 60 60 60 60 60 60 6			tnec	Per S	70	0 0	0.0001			IGSL Ltd Materials Laboratory	
			COBBLES						GRAVEL								SAND						SILT/CLAY				IGSL LTG N	
	%	passing	100	100	100	100	100	100	66	66	66	86	26	92	88	89	61	53	31	18								
	particle	size	75	63	20	37.5	28	50	14	10	6.3	5	3.35	2	1.18	9.0	0.425	0.3	0.15	0.063								

Determination of Particle Size Distribution **TEST REPORT**

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5 (note: Sedimentation stage not accredited)

Particle % Accordance No. Report N				(index, dedinieritation stage not		acci edited)				DELANCED IN SCOPE REB NO. 1331	1 56
100 COBBLES Sample No. AA56212 Lab. Sample No. A173 100 COBBLES Sample No. AA56212 Lab. Sample No. A174 100 Sample No. AA56212 Lab. Sample No. A175 100 Customer: Defective of O4-07-17 Date Testing Started Description: Grey/brown slightly slity, slightly sandy, GRAVEL 100 Command of Comment of Comm	particle	%		Contract		20159	Report No.	R80838			
100 COBBLES Sample No. AA56212 Lab. Sample No. A17 Sample No. AA56212 Lab. Sample No. AA5612 Lab. Sam	size	passing		Contract		Capdoo, Cla	ine				
Sample No. AA56212 Lab. Sample No. A17 26 16 17 18 18 CRAVEL Remarks Sample Type: B CRAVEL CRAVEL CAN SILTYCLAY O.0001 O.001 O.01 CAN SILT Sieve size (mm) SAM Approved by: CAN Persons authorised to approver report:	75	100	CORRIES	BH/TP:		BH01					
Sample Type: B Depth (m) 7.00 Customer: DBFL Consulting Engineers	63	28	CORPE	Sample 1		AA56212	Lab. Sample	No.	A17/3239		
16 17 17 17 18 18 18 19 19 19 19 19	20	34		Sample		В					
GRAVEL Remarks Remove the control of the following started and the following started bescription: Grey/brown slightly slightly sandy, GRAVEL Remarks Remarks Remove the control of the following started bescription: Grey/brown slightly slightly sandy, GRAVEL Remarks R	37.5	56		Depth (r		7.00	Customer:	DBFL Consulting E	ingineers,Ormond Hou	se, Upper Ormond Quay, Dubl	in 7, Ireland
11 Description: Grey/brown slightly silty, slightly sandy, GRAVEL Remarks Newtons Start St	28	16		Date Rec		04-07-17	Date Testing	started	05-07-17		
SAND SILT/CLAY CAAY SILT Sieve size (mm) SAM SAM SAM SILT Sieve size (mm) SAM SAM SILT Sieve size (mm) SAM SAM SILT Sieve size (mm) SAM	20	11		Descript		Grey/brown	slightly silty, s	lightly sandy, G	RAVEL with many	cobbles	
SAND SILT/CLAY SILT SI	14	80									
SILT/CLAY 0.001 0.001 0.	10	7	GRAVEL	Remarks		Note: Clause 9.2 and Clause 9.5	of BS1377:Part 2:1990 have been s	uperseded by ISO17892-4:2016	Sample size did not meet the require	nents of 851377	
SAND SILT/CLAY O O O O O O O O O O O O O	6.3	9									9
SILT/CLAY O.0001 O.001 O.001 O.001 O.001 O.001 O.001 CLAY SILT Sieve size (mm) SAM Approved by: High-report report: Persons authorised to approve report:	2	9							.42) 6.0	3.33 5.3 01	2.78 03 59 59
SAND Sill T/CLAY Sill T Sieve size (mm) SAM	3.35	9		100				E	0		
SILT/CLAY O.0001 O.001 O.01 CLAY SILT Sieve size (mm) SAW Approved by: H. E. Freedom: Persons authorised to approve report:	2	Ŋ		06							
3 SAND Sin Sand	1.18	4									
3 SAND	9.0	က									
SILT/CLAY SILT/CLAY O.0001 O.001 O.01 O.1	0.425	က	SAND								
SILT/CLAY	0.3	2									
SILT/CLAY O.0001 O.0001 O.001 O.01 CLAY SILT Sieve size (mm) SAM Approved by: HGSL Ltd Materials Laboratory Persons authorised to approve report:	0.15	2									
20	0.063	-									
20 10 0.0001 0.0001 0.001 0.01 0.11 CLAY S/L7 Sieve size (mm) SA/W td Materials Laboratory Persons authorised to approve report:											
0.0001 0.001 0.11 CLAY S/L T Sieve size (mm) SAM td Materials Laboratory Persons authorised to approve report:											
2.4 S/L T Sieve size (mm) SA/N/S/L/A S/L T Sieve size (mm) SA/N/S/L/A S/L/A S/			SILT/CLAY	10							
2.47 Sieve size (mm) SAM Approved by: HRETE				0.0001	0.001		0.01	0.1	-	00	100
Approved by: Approved by: Approved by: Persons authorised to approve report:					C	ΑY		ve size (mm)	SAND	GRA VEL	
Persons authorised to approve report:			100	Market State 1				Approved by:		Date:	Page no:
			IGSL LT	d Materiais Labo	oratory			4 Byen	1	24-07-17	1 of 1
							Persons auth	orised to approve		uality Manager) H Byrne (L	aboratory Manager)

Determination of Particle Size Distribution **TEST REPORT**

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5 (note: Sedimentation stage not accredited)

				נוסיכי סכמווופווימיוסון אימאפ ווסר מככו פתורפת	שב ווחר מינו במונכת			DETOTELL IN SCOPE REB NO. 1334	F
particle		%		Contract No:	20159	Report No. R	R80727		
size		passing	ı	Contract:	Capdoo, Clane	ane			
75		100 COBRIES		BH/TP:	BH2				
63		100		Sample No.	AA56214	Lab. Sample No.	. A17/3240		
20		100		Sample Type:	В				
37.5		100		Depth (m)	1.00	Customer: DE	DBFL Consulting Engineers, Ormond House, Upper Ormond Quay, Dublin 7, Ireland	ouse, Upper Ormond Quay, Dubl	in 7, Ireland
28		06		Date Received	04-07-17	Date Testing started	arted 07-07-17		
20	-	80		Description:	Dark brown	Dark brown slightly sandy, gravelly, CLAY			
14		75 GBAVE							
10		72 312.		Remarks	Note: Clause 9.2 and Clause 5	Note: Clause 9.2 and Clause 9.5 of BS1377.Part 2:1990 have been superseded by ISO17892-4:2016	ed by ISO17892-4:2016		
6.3		89					5	9	9
2		99					80.0 8.0 8.4 8.0	2.33 5.3 5.3 10	82 82 83 03 83
3.35		63		100			0		
2		59	_	06					
1.18		56	(80					
0.6		52	%)	70					
0.425		SAND SAND	6uis	09					
0.3		48	sed	0.07				\	
0.15		42	ə6e	000					
0.063		38	:eut	40					
0.037		34	Derc	30					
0.02		32		20		\			
0.017		30 SII 1// 1 4		10	\				
0.010		26 SILI / CLAI		0					
0.007		23		0.0001	0.001	0.01	0.1	. 10	100
0.005		21			CLAY	S// 7 Sieve	Sieve size (mm) SAMO	GRAVEI	
0.002		11							
		1 1001	+QM0+	40 00000	Š	A	Approved by:	Date:	Page no:
		IGSE E	רט ואומו	IGSE ELU Materiais Laboratory	ory	- γ	H Byon-	24-07-17	1 of 1
						Persons authorise	Persons authorised to approve report: J Barrett	J Barrett (Quality Manager) H Byrne (Laboratory Manager)	aboratory Manager)
									(106-1111)

TEST REPORT Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5 (note: Sedimentation stage not accredited)

						in 7, Ireland					S	28 37. 50 58 58 58											100		Page no:	1 of 1
OL TOTAL REIG NO. 10						DBFL Consulting Engineers, Ormond House, Upper Ormond Quay, Dublin 7, Ireland				nents of BS1377		2.3 5.3 01 14 20 20											10	GRAVEL	Date:	12-07-17
				A17/3244		ing Engineers,Ormond Hous	05-07-17	h some cobbles		16 Sample size did not meet the requirements of BS1377	S	1.0 8.0 S4.0 6.0) SAND	by:	
	Report No. R80630			Lab. Sample No.		Customer: DBFL Consulti	Date Testing started	Brown clayey/silty, sandy, GRAVEL with some cobbles		Note: Clause 9.2 and Clause 9.5 of BS1377-Part 2:1990 have been supersoded by ISO17892-4:2016		90.0											1 0.1	S/L7 Sieve size (mm)	Approved by:	4 Byen
,	20159 Rep	Capdoo, Clane	TP07	AA78667 Lab		0.50 Cus	04-07-17 Dat	Brown clayey/silt)		Note: Clause 9.2 and Clause 9.5 of BS1377:Pa													0.001 0.01	CLAY S		,
	Contract No:	Contract:	BH/TP:	Sample No.	Sample Type:	Depth (m)	Date Received	Description:		Remarks													1001			IGSL Ltd Materials Laboratory
												8	100	06	08	%)				tne:	50	01 0	- 0			d Mater
			COBBLEC	COBBLES					GRAVEI								SAND					SILT/CLAY] ;	IGSL Lt
	%	passing	100	88	27	69	62	22	51	46	40	38	34	29	56	23	22	21	17	14						
	particle	size	75	63	20	37.5	28	20	14	10	6.3	Ŋ	3.35	2	1.18	9.0	0.425	0.3	0.15	0.063						

Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)

Determination of Particle Size Distribution **TEST REPORT**

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5 (note: Sedimentation stage not accredited)

			(note: Sedimentation stage not accredited)	n stage not acci	edited)		DEI AILED IN SCOPE REB NO. 1335	
particle	%		Contract No:		20159 Report No.	. R80839		
size	passing		Contract:	Cak	Capdoo , Clane			
75	100	CORRIEC	BH/TP:	TP05)5			
63	100	COBBLES	Sample No.		AA67770 Lab. Sample No.	le No. A17/3243		
20	100		Sample Type:					
37.5	95		Depth (m)	1.60	0 Customer:	DBFL Consulting Engineers, Ormond House, Upper Ormond Quay, Dublin 7, Ireland	ouse, Upper Ormond Quay, Dubl	n 7, Ireland
28	82		Date Received		04-07-17 Date Testing started	ng started 07-07-17	21	
20	78		Description:		k brown slightly claye	ry sandy, GRA		
4	29	CDAVE						
10	61	GRAVEL	Remarks	Note: Q	Note: Clause 9.2 and Clause 9.5 of BS1377.Part 2:1990 have been supersoded by ISO17892-4:2016	een superseded by ISO17892-4:2016		
6.3	54					9	9	
2	51					50.0 81.0 8.0 81.1	2.35 5.3 6.3	82 82 50 50 83 83
3.35	46		100					
2	4		06					
1.18	33		08					
9.0	17		(%)					
0.425	7	SAND						
0.3	80							
0.15	2							
0.063	4		stines 04 (
			20					
		SII T/CI AY	10					
			0					
			0.0001	0.001	0.01	0.1	10	100
				CLAY	SIFL	Sieve size (mm) SAND	GRAVEL	
						-		
		+ 1 1551	16SI 1 td Materials I aboratory	otor.		Approved by:	Date:	Page no:
		1905	שומככו ומוא במאטו	atol y		H Byen-	19-07-17	1 of 1
					Persons au	Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)	(Quality Manager) H Byrne (L	aboratory Manager)

Determination of Particle Size Distribution Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5 TEST REPORT

TESTING DEANIED IN SCOPE REB NO. 1337							., Upper Ormond Quay, Dublin 7, Ireland						3.3 5.6 10 10 10 10 10 10 10 10 10 10 10 10 10												01			Date: Page no:	24-07-17 1 of 1	J Barrett (Quality Manager) H Byrne (Laboratory Manager)
(note: Sedimentation stage not accredited)	Contract No: 20159 Report No R80630			NO	Sample Type: D	C C C	0.30 Customer: DBFL Consulting Engineers,	Brown clayest/cilty, cond.	Coscipcion.	Remarks	Total Clause 5.5 of 85) 377 Part 2:1990 have been supersocied by ISO77892-4:2016	SS	.0 0 0	06	C & &					od o	30 ao	50	10	0	0.0001 0.001 0.01	CLAY Sleve size (mm) SAND	Approved by:			Persons authorised to approve report: J Barrett (Qua
			32 10000	COBBLES						GKAVEL							SAND						VA 12/ T 112	SILI / CLAI				IGSL LTC		
	%	passing	100	88	77	69	62	57	51	46	40	38	34	29	56	23	22	21	17	14										
	particle	size	75	63	50	37.5	28	20	4	10	6.3	Ŋ	3.35	2	1.18	9.0	0.425	0.3	0.15	0.063								,		

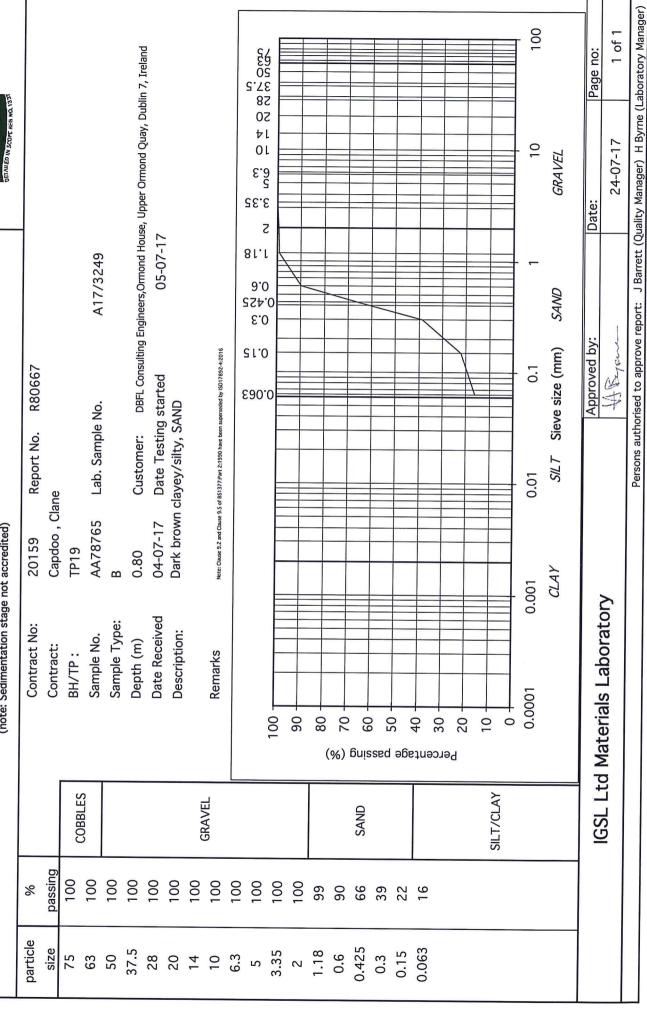
Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5

TESTING TESTING							Dublin 7, Ireland					S	28 37 50 50 53													100		Page no:	1 of 1	(Laboratory Manager)
TESTING TESTING OFINITED IN SCORE REAL MOLT 373							louse, Upper Ormond Quay,	17			quirements of BS1377	8	3.5													10	GRA VEL	Date:	24-07-17	Juality Manager) H Byrne
	P80621	Nous I			IO. AT7/3246		sulting Engineers,	tarted 05-07-17	SIL I / CLAY		seded by ISO17892-4:2016 Sample size did not meet the requirements of BS1377	18 3 3 3 9 18	.0 .0 .0.4												,	0.1	Sieve size (mm) SAND	Approved by:	H Byon-	Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)
not accredited)	20159 Report No	5	doo, clane	AA78666 Lah Samula Na		Customer	17 Date Tier.	O+-O/-1/ Date Testing started Dark brown sandy gravelly, SII + 701 AV	Servin Sailuy, gravelly,	P 9 and Chaire 0 C of present and control	and Laure 3.3 of B313/13981 2:1990 have been superseded by ISO17892-4;2016																SILT Sieve	A		Persons authorise
(note: Sedimentation stage not accr	Contract No: 20			γo.	 		VeV.			Remarks			100	06	80				200	04	30	20	10	0	0.0001	5	CLAY	IGSL Ltd Materials Laboratory		
			CORRI FC							GRAVEL							SAND					3	SII T/CI AY					IGSL Ltd N		
	%	passing	100	100	100	84	81	27	75	72	71	70	29	63	22	52	49	44	35	27	24	22			15	13	7			
	particle	size	75	63	20	37.5	28	20	41	10	6.3	Ŋ	3.35	2	1.18	9.0	0.425	0.3	0.15	0.063	0.037	0.026	0.017	0.010	0.007	0.005	0.002			

Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5

																											Т
ी हैं। जिल्ला						Jin 7 Iroland	מווו /, זופומות					8 2.5 8 8 8 9	23.28			<u> </u>							100		Page no:	1 of 1	
OETAILED IN SCOPE REBING, 1338						Ilnner Ormand Out	c, opper official quay, but					35.3 6.3 7 0	ι -										10	GRA VEL	Date:	24-07-17	Domoth (O. office Measure 11 Process
	R80665			A17/3247		DBFL Consulting Engineers. Ormand Hause Univer Ormand Origin 7 Treatment	arted 05-07-17			dby ISO17892-4:2016	!	.063 81.0 81.0	0 =										0.1	Sieve size (mm) SAND	Approved by:	H Byen-	Dercore authorized to constant of the property (A)
ited)	Report No.	Capdoo , Clane		1687 Lab. Sample No.		Customer:	Date Testing	htly		Note: Clause 9.2 and Clause 9.5 of BS1377-Part 2:1990 have been supersoded by ISO17892-4:2016													0.01	S/LT Sieve	Ar	7	Coirodtuc adoarod
(note: Sedimentation stage not accredited)	Contract No: 20159	Contract: Capd	BH/TP: TP14	Sample No. AA78687	.: •	Depth (m) 1.20	ved			Remarks Note: Clause 9													0.001	CLAY		iose eta Materiais Laboratory	
(note:													100 L	- 06	- 08	(%)					Perc S	10	0.0001		Motorio!	ט ואומנפוומו	
			CORRIEC						19/VE	GRAVEL							SAND					SILT/CLAY		,	1 1001	IGSE EU	
	%	passing	100	100	96	83	27	74	69	29	64	63	09	58	55	51	49	47	42	36							
	particle	size	75	63	20	37.5	28	20	14	10	6.3	2	3.35	2	1.18	9.0	0.425	0.3	0.15	0.063							

Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5



			(note: Sedimentation stage not accredited)	credited)		TESTING OFFAILED IN SCOPE REB NO. 1331	
particle	%		Contract No: 20	20159 Report No.	R80666		
size	passing		Contract: Câ	Capdoo , Clane			
75	100	CORRIEC		TP18			
63	100		Sample No. A	AA78671 Lab. Sample No.	NO. A17/3248		
20	100		.: •				
37.5	90			1.10 Customer:	DBFL Consulting Engineers.Ormond House. Upper Ormand Original Treland	e. Upper Ormand Ottay Dublin 7 12	bucle
28	82		Date Received 0	04-07-17 Date Testing started	started 05-07-17	למשלי סיייסיים למשלי סמסוווי לי זונ	
20	29			owr.	y, gravelly, SILT/CLAY		
14	92	ביי אים					
10	72	GKAVEL	Remarks	Note: Clause 9.2 and Clause 9.5 of BS1377-Part 2:1990 have been superseded by ISO17892-4:2016	rrseded by ISO17892-4:2016		
6.3	89						
Ŋ	99				81.0 81.0 825 9.0	.35 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	35
3.35	63		100		0:0	1 9 E	4
2	29		06				
1.18	26		08				
9.0	51						
0.425	49	SAND	buis gris				
0.3	47					V	
0.15	42						
0.063	36		ot 40				
			30				
			Per 20				
			C				
		SILT/CLAY	2 0				
			0.0001 0.001	0.01	0.1	10	8
			CLAY	SILT	Sieve size (mm) SAND	GRAVEL	
		1 1001			Approved by:	Date: Page no:	no:
		ופטר דנ	IGSE ELU Materiais Laboratory		4 Brown	24-07-17	1 of 1
				Persons author	Persons authorised to approve report: J Barrett (Ous	J Barrett (Ouality Manager) H Byrne (Laboratory Manager)	(Vanader)
					1	משונה וה להשתי להיים	ory mainager)

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5

(note: Sedimentation stage not accredited)

TEST REPORT Determination of Particle Size Distribution

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5 (note: Sedimentation stage not accredited)

											_															
						7, Ireland					S	28 37. 50 53 53											100		Page no:	>
						DBFL Consulting Engineers, Ormond House, Upper Ormond Quay, Dublin 7, Ireland						2.3 5.3 10 10 14 20 20											10	GRA VEL	Date:	
				A17/3251		Ilting Engineers,Ormond Hou	05-07-17	:LAY		2016	S	1.0 8.0 S4.0 6.0	0											ım) <i>SAND</i>	d by:	
	o. R80632			ple No.			Date Testing started	ravelly, SILT/C		ve been superseded by ISO17892-4:	ε	90.0	0										0.1	Sieve size (mm)	Approved by:	
R	Report No.	, Clane		5 Lab. Sample No.		Customer:		Brown sandy, slightly gravelly, SILT/CLAY		Note: Clause 9.2 and Clause 9.5 of BS1377-Part 2:1990 have been supersoded by ISO17892-4:2016													0.01	SILT		
	20159	Capdoo, Clane		AA67755	В	0.50	04-07-17			Note: Clause 9.2 and													0.001	CLAY		740
	Contract No:	Contract:	BH/TP:	Sample No.	Sample Type:	Depth (m)	Date Received	Description:		Remarks			100	- 06	08	02				stras	02	01	0.0001			ICCI 1+d Materials I aborator
			COBBLES						20 AVE	GRAVEL							SAND					SILT/CLAY			200	7+
	%	passing	100	100	100	100	100	100	100	100	66	66	66	66	86	26	26	92	74	41						
	particle	size	75	63	20	37.5	28	20	14	10	6.3	2	3.35	2	1.18	9.0	0.425	0.3	0.15	0.063						

Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)

1 of 1

24-07-17

IGSL Ltd Materials Laboratory

Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5 (note: Sedimentation stage not accredited)

			ב	(note: sedimentation stage not accredited)	ye not accredited)				DEIMILED IN SCOPE REB NO. 1337	E
particle	%			Contract No:	20159	Report No.	R80633			
size	passing			Contract:	Capdoo, Clane	ane				
75	100	CORRIEC		BH/TP:	TP25					
63	100	CORRECT		Sample No.	AA67751	Lab. Sample No.	70.	A17/3252		
20	100			Sample Type:	В					
37.5	100			Depth (m)	1.80	Customer:	DBFL Consulting Er	gineers,Ormond Hous	DBFL Consulting Engineers, Ormond House, Upper Ormond Quay, Dublin 7, Ireland	n 7, Ireland
28	100			Date Received	04-07-17	Date Testing started	started	05-07-17		
20	26			Description:	Dark brown	Dark brown clayey/silty, gravelly, SAND	avelly, SAND			
14	92	GRAVEL								
10	94			Remarks	Note: Clause 9.2 and Clause 9	Note: Clause 9.2 and Clause 9.5 of BS1377-Part 2:1990 have been superseded by ISO17892-4:2016	rerseded by ISO17892-4:2016			
6.3	93							Si		S
2	95		8				90.0	8.0 S4.0 6.0	2.3 5.3 10 14 20 20 20	28 37. 50 50 53
3.35	06			100						
2	98		<u></u>	06						
1.18	71			08						
9.0	44			02						
0.425	35	SAND		09						
0.3	27			0						
0.15	16									
0.063	11		tnec	04 0						
				30						
			7	20						
		SILT/CLAY	•	10			\			
				0001	0.001	0.01	0.1		- 01	100
					CLAY	S/LT Siev	Sieve size (mm)	SAND	GRA VEL	
							Na povozady		00401	0000
		IGSL Lt	d Mate	IGSL Ltd Materials Laboratory	2		Approved by.		Date.	rage no.
							# Prom	1	24-07-17	1 of 1
						Persons autho	orised to approve	eport: J Barrett (Q	Persons authorised to approve report: J Barrett (Quality Manager) H Byrne (Laboratory Manager)	aboratory Manager)

Chemtest The right chemistry to deliver results

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

Final Report

Report No.: 17-17340-1

Initial Date of Issue: 13-Jul-2017

Client IGSL

Client Address: M7 Business Park

Naas

County Kildare

Ireland

Contact(s): Darren Keogh

Project 20159 - Capdoo Clane (DBFL)

Quotation No.: Q17-08989 Date Received: 05-Jul-2017

Order No.: Date Instructed: 06-Jul-2017

No. of Samples: 5

Turnaround (Wkdays): 5 Results Due: 12-Jul-2017

Date Approved: 13-Jul-2017

Approved By:

Details: Martin Dyer, Laboratory Manager

The right chemistry to deliver results Project: 20159 - Capdoo Clane (DBFL)	to deliver result	Sults				
Client: IGSL		Chei	ntest J	ob No.:	Chemtest Job No.: 17-17340	17-17340
Quotation No.: Q17-08989		Chemte	st Sam	Chemtest Sample ID.:	480025	
Order No.:		Clier	nt Samp	Client Sample Ref.:	1	78679
		Clie	ent Sam	Client Sample ID.:	TP4	TP15
			Sampl	Sample Type:	SOIL	SOIL
			Top Der	Top Depth (m):	0.50	09.0
1		Bot	tom Der	Bottom Depth (m):	0.50	0.60
Determinand	Accred.	SOP	Units	LOD		
Ammonium	ח	1220	l/bm	0.010	0.17	0 18
Ammonium	z	1220		0.10	17	2 0
Boron (Dissolved)	n	1450	l/gu	20	< 20	000 >
Boron (Dissolved)	z	1450	mg/kg	0.20	< 0.20	< 0.20

Results - Soil

st	results .)
te	deliver ne (DBFL
	t chemistry to Capdoo Clar
9	ight che
0	The r
K	Proje

Client: IGSL		Cher	Chemtest Job No.:	P No.:	17-17340	17-17340	17-17340	17-17340	17-1/340
Quotation No.: Q17-08989	_	hemte	Chemtest Sample ID.:	le ID.:	480022	480023	480024	480025	480363
Order No.:		Clier	Client Sample Ref.:	e Ref.:	56214	78662	627763	28693	78679
		Clie	Client Sample ID.	ole ID.:	BH2	TP9	TP22	TP4	TP15
			Sample Type:	Type:	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Depth (m):	th (m):	1.00	0.50	1.20	0.50	09:0
		Bot	tom Dep	th (m):	1.00	0.50	1.20	0.50	09.0
			Asbestos Lab:	s Lab:				COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD					
ACM Type	n	2192		N/A				1	ı
Asbestos Identification	ח	2192	%	0.001				No Asbestos	No Asbestos
Moisture	z	2030	%	0.000	7.8	7	10	18	Delected 14
Hd	Σ	2010	2	N N	[A] 8.1	[A] 8.5	[A] 8.5	2	-
Boron (Hot Water Soluble)	Σ	2120	mg/kg	0.40				< 0.40	0.90
Sulphate (2:1 Water Soluble) as SO4	M	2120	l/ß	0.010	< 0.010	0.017	< 0.010		
Sulphur (Elemental)	M	2180	mg/kg	1.0				[A] < 1.0	[A] < 1.0
Cyanide (Total)	M	2300	mg/kg	0.50				[A] < 0.50	[A] < 0.50
Sulphide (Easily Liberatable)	n	2325	mg/kg	0.50				[A] 3.8	[A] 3.9
Sulphate (Acid Soluble)	Σ	2430	%	0.010				[A] 0.036	[A] 0.026
Arsenic	M	2450	mg/kg	1.0				22	11
Barium	M	2450	mg/kg	10				62	63
Cadmium	M	2450	mg/kg	0.10				3.9	1.7
Chromium	Σ	2450	mg/kg	1.0				32	19
Copper	Σ	2450	mg/kg	0.50				69	22
Mercury	Σ	2450	mg/kg	0.10				0.28	0.16
Molybdenum	Σ	2450	mg/kg	2.0				3.8	3.3
Nickel	Σ	2450	mg/kg	0.50				91	32
Lead	Σ	2450	mg/kg	0.50				51	27
Antimony	z	2450	mg/kg	2.0				3.3	< 2.0
Selenium	Σ	2450	mg/kg	0.20				1.5	0.91
Zinc	M	2450	mg/kg	0.50				300	110
Chromium (Trivalent)	z	2490	mg/kg	5.0				32	19
Chromium (Hexavalent)	z	2490	mg/kg	0.50				< 0.50	< 0.50
Total Organic Carbon	Σ	2625	%	0.20				[A] 0.50	[A] 0.49
Mineral Oil	z	2670	mg/kg	10				< 10	< 10
Aliphatic TPH >C5-C6	z	2680	mg/kg	1.0			-6	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C6-C8	z	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0
Aliphatic TPH >C8-C10	Σ	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0
Aliphatic TPH >C10-C12	Σ	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0
Aliphatic TPH >C12-C16	Σ	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0
Aliphatic TPH >C16-C21	M	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0
Aliphatic TPH >C21-C35	Σ	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0
Aliphatic TPH >C35-C44	z	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0
Total Aliphatic Hydrocarbons	z	2680	mg/kg	5.0				[A] < 5.0	[A] < 5.0
Aromatic TPH >C5-C7	z	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0
Aromatic TDH >C7_C8	Z	2680	2680 ma/ka	1.0				01/1/	[/1/10

Results - Soil

2	results
te	deliver r
	emistry to
	ne right che
0	The r ect: 2018
X.	Proje

									and the second of the second o
Client: IGSL		Cher	Chemtest Job No.:	Toronto.	17-17340	17-17340	17-17340	17-17340	17-17340
Quotation No.: Q17-08989		hemte	Chemtest Sample ID.:	: D:	480022	480023	480024	480025	480363
Order No.:		Clier	Client Sample Ref.:	Ref.:	56214	78662	67763	78693	78679
		Clie	Client Sample ID.:	e ID.:	BH2	TP9	TP22	TP4	TP15
			Sample Type:	Type:	SOIL	SOIL	SOIL	SOIL	SOIL
		32	Top Depth (m):	.(m)	1.00	0.50	1.20	09'0	09'0
		Bot	Bottom Depth (m):	:(m)	1.00	0.50	1.20	0.50	09'0
			Asbestos Lab:	Lab:				COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	ГОБ					
Aromatic TPH >C8-C10	M	2680		1.0				[A] < 1.0	[A] < 1.0
Aromatic TPH >C10-C12	Σ	2680		1.0				[A] < 1.0	[A] < 1.0
Aromatic TPH >C12-C16	M	2680		1.0				[A] < 1.0	[A] < 1.0
Aromatic TPH >C16-C21	n	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0
Aromatic TPH >C21-C35	Σ	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0
Aromatic TPH >C35-C44	z	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0
Total Aromatic Hydrocarbons	Z	2680	mg/kg	5.0				[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	z	2680	mg/kg	10.0				[A] < 10	[A] < 10
Benzene	M	2760	µg/kg	1.0				[A] < 1.0	[A] < 1.0
Toluene	Σ	2760		1.0				[A] < 1.0	[A] < 1.0
Ethylbenzene	Σ	2760	µg/kg	1.0				[A] < 1.0	[A] < 1.0
m & p-Xylene	Σ	2760	µg/kg	1.0				[A] < 1.0	[A] < 1.0
o-Xylene	Σ	2760	µg/kg	1.0				[A] < 1.0	[A] < 1.0
Methyl Tert-Butyl Ether	Σ	2760	ng/kg	1.0				[A] < 1.0	[A] < 1.0
Naphthalene	Σ	2800	mg/kg	0.10				< 0.10	< 0.10
Acenaphthylene	z	2800	mg/kg (0.10				< 0.10	< 0.10
Acenaphthene	Σ	2800	mg/kg	0.10				< 0.10	< 0.10
Fluorene	M	2800	mg/kg	0.10				< 0.10	< 0.10
Phenanthrene	Σ	2800	mg/kg	0.10				< 0.10	< 0.10
Anthracene	Σ	2800	mg/kg	0.10				< 0.10	< 0.10
Fluoranthene	M	2800	mg/kg	0.10				< 0.10	< 0.10
Pyrene	M	2800	mg/kg	0.10				< 0.10	< 0.10
Benzo[a]anthracene	Σ	2800	mg/kg	0.10				< 0.10	< 0.10
Chrysene	Σ	2800	mg/kg	0.10				< 0.10	< 0.10
Benzo[b]fluoranthene	Σ	2800	mg/kg	0.10				< 0.10	< 0.10
Benzo[k]fluoranthene	Σ		mg/kg	0.10	1			< 0.10	< 0.10
Benzo[a]pyrene	Σ	2800	mg/kg	0.10				< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	Σ	2800	mg/kg	0.10				< 0.10	< 0.10
Dibenz(a,h)Anthracene	z	2800	mg/kg	0.10				< 0.10	< 0.10
Benzo[g,h,i]perylene	M	2800	mg/kg	0.10				< 0.10	< 0.10
Coronene	z	2800	mg/kg	0.10				< 0.10	< 0.10
Total Of 17 PAH's	z	2800	mg/kg	2.0				< 2.0	< 2.0
PCB 28	M	2815	mg/kg	0.010				[A] < 0.010	[A] < 0.010
PCB 52	Σ	2815	mg/kg	0.010				[A] < 0.010	[A] < 0.010
PCB 90+101	Σ	2815	mg/kg	0.010				[A] < 0.010	[A] < 0.010
PCB 118	Σ	2815	mg/kg	0.010				[A] < 0.010	[A] < 0.010
PCB 153	Σ	2815	mg/kg	0.010				[A] < 0.010	[A] < 0.010
PCB 138	Σ	2815	mg/kg	0.010				[A] < 0.010	[A] < 0.010

Client: IGSL		Chen	ntest Jo	b No.:	Chemtest Job No.: 17-17340	17-17340	17-17340	17-17340	17-17340
Quotation No.: Q17-08989	0	hemtes	Chemtest Sample ID.:	le ID.:	480022	480023	480024	480025	480363
Order No.:		Clien	Client Sample Ref.:	e Ref.:	56214	78662	67763	78693	78679
		Clie	Client Sample ID.:	ole ID.:	BH2	TP9	TP22	TP4	TP15
			Sample Type:	: Type:	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Depth (m):	th (m):	1.00	0.50	1.20	0.50	09'0
		Bott	Bottom Depth (m):	th (m):	1.00	0.50	1.20	0.50	09'0
			Asbestos Lab:	s Lab:				COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD					
PCB 180	M	2815	mg/kg	0.010				[A] < 0.010	[A] < 0.010
Total PCBs (7 Congeners)	z	2815	mg/kg	0.10				[A] < 0.10	[A] < 0.10
Total Phenols	M	2920	mg/kg	0.30				< 0.30	< 0.30

Project: 20159 - Capdoo Clane (DBFL)

Hazardous To evaluate Waste Landfill Limit values for compliance leaching test 25000 00000 10 200 50000 ŀ 300 500 1000 Landfill Waste Acceptance Criteria 200 30 40 20 using BS EN 12457-3 at L/S 10 I/kg hazardous waste in non-Stable, Nonhazardous To evaluate reactive Landfill 150 15000 100 00009 9 800 10 10 10 10 0.5 50 9 0.7 50 Inert Waste Landfill 500 20 0.06 100 9 0.5 0.01 0.5 1000 4000 0.5 800 500 10:1 Eluate A] < 0.010 [A] 0.50 < 0.050 < 0.0050 < 0.050 < 0.050 < 0.010 [A] < 10 < 0.010 < 0.050 < 0.10 < 0.050 < 0.50 < 0.010 < 2.0 mg/kg < 0.010 < 0.50 0.031 < 0.30 8.1 150 mol/kg 10:1 Eluate < 0.00050 0.0031 < 0.0010 < 0.0010 0.0023 < 0.0010 0.0038 < 0.00010 < 0.0010 < 0.0010 mg/kg mg/kg Units mg/kg mg/kg 0.0022 66 < 0.030 mg/l < 1.0 0.38 % 15 9.5 Accred. Σ Σ zΣ SOP 2625 2610 2760 2815 2670 2670 2800 2015 1450 1450 1450 1450 1450 1450 1450 1450 1450 17-17340 480025 78693 TP4 0.50 1450 1220 1220 1610 1920 **IPH Total WAC (Mineral Oil)** Acid Neutralisation Capacity otal PCBs (7 Congeners) Dissolved Organic Carbon Chemtest Sample ID: otal Dissolved Solids otal Organic Carbor Bottom Depth(m): Chemtest Job No: otal (Of 17) PAH's oss On Ignition Eluate Analysis rop Depth(m): Sampling Date: Sample Ref: Sample ID: **Determinand** Jolybdenum henol Index otal BTEX Chromium Antimony Selenium ulphate opper lercury Chloride Arsenic Barinm luoride lickel ead

Dry mass of test portion/kg	060 0
Moisture (%)	2

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project: 20159 - Capdoo Clane (DBFL)

Chemtest Job No:	17-17340				LandfIII \	Landfill Waste Acceptance Criteria	Criteria
cnemtest sample ID:	480363					Limits	
Sample Ref:	78679					Stable, Non-	
Sample ID:	TP15					reactive	Hazardone
Top Depth(m):	09.0				Inert Waste	hazardone	Waste
Bottom Depth(m):	0.60				Landfill	waste in non-	landfill
Sampling Date:						hazardous	
Determinand	SOP	Accred.	Units			Landfill	
Total Organic Carbon	2625	Σ	%	[A] 0.49	33	2	ď
Loss On Ignition	2610	Σ	%	1.5	1) :	5
Total BTEX	2760	Σ	ma/ka	[A] < 0.010	9		2
Total PCBs (7 Congeners)	2815	Σ	mg/kg	< 0.10		1	:
TPH Total WAC (Mineral Oil)	2670	Σ	mg/kg	[A] < 10	200		1
Total (Of 17) PAH's	2800	Z	mg/kg	< 2.0	100	:	
Hd	2010	M		8.1	:	9<	
Acid Neutralisation Capacity	2015	Z	mol/kg	0.049	1	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	Limit values for compliance leaching test	aching test
			mg/l	mg/kg	using BS	using BS EN 12457-3 at L/S 10 I/kg	S 10 I/kg
Arsenic	1450	n	< 0.0010	< 0.050	0.5	2	25
Barium	1450	n	0.0031	< 0.50	20	100	300
Cadmium	1450	n	< 0.00010	< 0.010	0.04	-	5
Chromium	1450	ח	0.0011	< 0.050	0.5	10	70
Copper	1450	n	0.0012	< 0.050	2	50	100
Mercury	1450	n	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	n	0.0068	0.068	0.5	10	30
Nickei	1450	D	< 0.0010	< 0.050	0.4	10	40
Lead	1450	n	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	D	< 0.0010	< 0.010	90.0	0.7	5
Selenium	1450	n	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	D	0.0020	< 0.50	4	50	200
Chloride	1220	D	1.7	17	800	15000	25000
Fluoride	1220	n	0.20	2.0	10	150	500
Sulphate	1220	n	6.4	64	1000	20000	50000
Total Dissolved Solids	1020	z	71	710	4000	00009	100000
Phenol Index	1920	D	< 0.030	< 0.30	1	1	
Dissolved Organic Carbon	1610	n	9.2	92	200	800	1000

Solid Illiorillation	
Dry mass of test portion/kg	060'0
Moisture (%)	14

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample ID:	Sample Ref:	Sample ID:	Sampled Date:	Deviation Code(s):	Containers Received:
480022	56214	BH2		Α	Amber Glass 250ml
480023	78662	TP9		А	Amber Glass 250ml
480024	67763	TP22		А	Amber Glass 250ml
480025	78693	TP4		Α	Amber Glass 250ml
480025	78693	TP4		Α	Amber Glass 60ml
480025	78693	TP4		Α	Plastic Tub 500g
480363	78679	TP15		А	Amber Glass 250ml
480363	78679	TP15		Α	Amber Glass 60ml
480363	78679	TP15		Α	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection

Test Methods

SOP	Title	Parameters included	Method summary
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Naphthol and TrimethylphenolsNote:	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

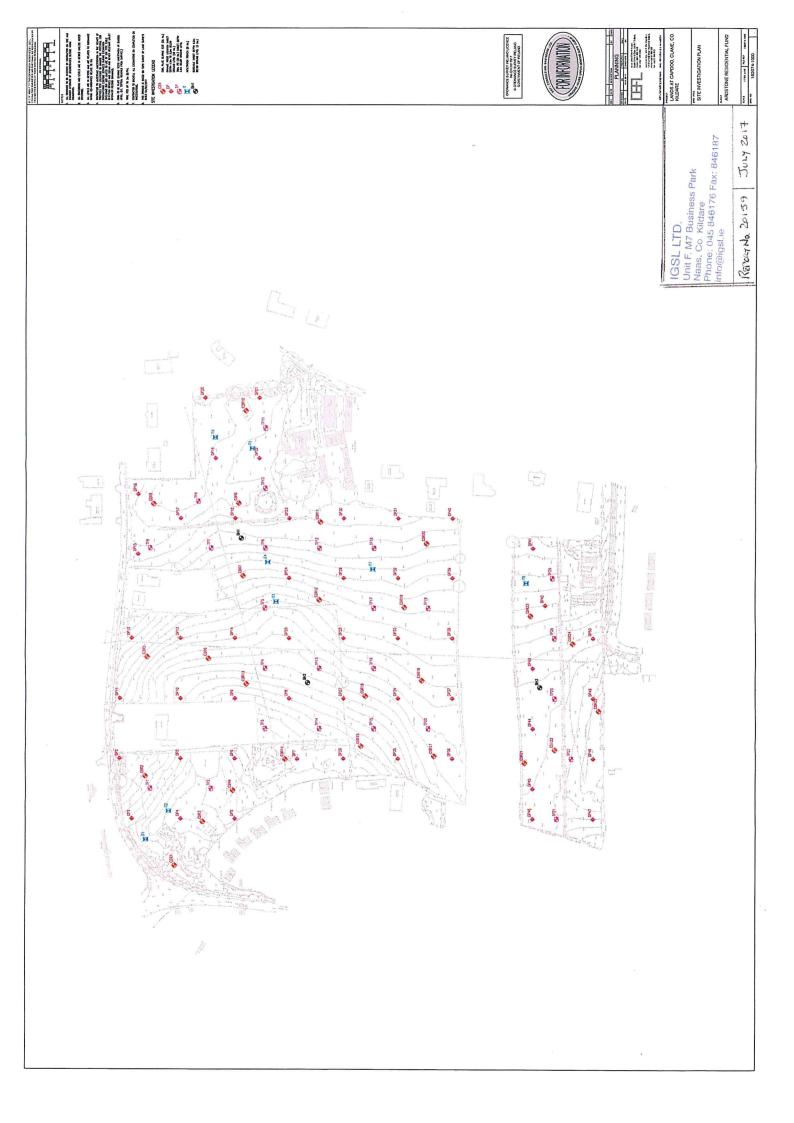
All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample

Sample Retention and Disposal


All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

